
Instantly share code, notes, and snippets.

nix-shell and Shebang Lines

travisbhartwell / nix-shell-shebang.md
Last active 3 days ago

 Star

Code Revisions 2 Stars 64 Forks 2

nix-shell-shebang.md

NOTE: a more up-to-date version of this can be found on my blog

nix-shell and Shebang Lines
A few days ago, version 1.9 of the Nix package manager was released. From the release notes:

nix-shell can now be used as a #!-interpreter. This allows you to write scripts that dynamically
fetch their own dependencies.

They followed with an example that used GHC's runhaskell to execute Haskell code using
libraries that had been specified in the shebang line. Unfortunately, this specific example doesn't
work, as it isn't sufficient information for Haskell to find the Network.HTTP library.

But this notwithstanding, it is still an interesting change that I have found useful. To use it, start your
scripts with two lines similar to this:

#! /usr/bin/env nix-shell

#! nix-shell -i python3 -p python3 python34Packages.pygobject3 libnotify gobjectIntros

The -i parameter to nix-shell tells it which interpreter to use when executing the script. Often, it is

from one of the dependencies, such as in the above example. The -p parameter gives one or more
dependencies to be used. `After the above lines follows the script (shameless borrowed from the
ArchWiki):

#! /usr/bin/env nix-shell

#! nix-shell -i python3 -p python3 python34Packages.pygobject3 libnotify gobjectIntros

from gi.repository import Notify

https://gist.github.com/travisbhartwell
https://gist.github.com/travisbhartwell/f972aab227306edfcfea
https://gist.github.com/login?return_to=https%3A%2F%2Fgist.github.com%2Ftravisbhartwell%2Ff972aab227306edfcfea
https://gist.github.com/travisbhartwell/f972aab227306edfcfea
https://gist.github.com/travisbhartwell/f972aab227306edfcfea/revisions
https://gist.github.com/travisbhartwell/f972aab227306edfcfea/stargazers
https://gist.github.com/travisbhartwell/f972aab227306edfcfea/forks
http://iam.travishartwell.net/2015/06/17/nix-shell-shebang/
https://nixos.org/releases/nix/nix-1.9/manual/#ssec-relnotes-1.9
https://wiki.archlinux.org/index.php/Desktop_notifications#Usage_in_programming

Notify.init("Hello world")

Hello=Notify.Notification.new("Hello world","This is an example notification.","dialog
Hello.show()

But its usefulness isn't limited to just writing scripts interpreted by one of the declared dependencies.
I needed to write a wrapper for some NodeJS scripts I had installed in the node_modules directory of
a project I am working on. I didn't want Node installed globally, so I did this:

#!/run/current-system/sw/bin/env nix-shell

#!nix-shell -i bash -p nodejs

readonly BIN_DIR="$(cd -P "$(dirname "${BASH_SOURCE[0]}")" && pwd)"

readonly CMD="$(basename ${BASH_SOURCE[0]/%-wrapper/})"

"${BIN_DIR}"/"${CMD}" "$@"

I simply made a symlink for each program in my node_modules/.bin directory to this file, with the
name program-wrapper , for example, tern-wrapper to wrap tern. Notice my script doesn't directly

call nodejs, though the underlying script it calls does.

One more example. I wrote the following script to render this document as I was writing it to check
the way it looked in HTML:

#!/run/current-system/sw/bin/env nix-shell

#!nix-shell -i bash -p inotifyTools pandoc

readonly FILE="$*"

if [$# -lt 1]; then

 echo "Usage: ${0} MARKDOWN_FILE" 2>&1

 echo "" 2>&1
 echo "MARKDOWN_FILE must exist before launching." 2>&1

 exit 1

fi

if [! -e "${FILE}"]; then

 echo "${FILE} doesn't yet exist, create it before launching!" 2>&1

 exit 1
fi

Assume the extension is .md
readonly OUTPUT=$(basename "${FILE}" ".md").html

echo "Press Control-C to quit watching for changes on ${FILE}."

while true; do
 inotifywait -q -e modify "${FILE}" &&

 echo "Updating HTML for ${FILE}" &&

http://ternjs.net/

 pandoc -s -f markdown -t html -o "${OUTPUT}" "${FILE}"

done

One last example, where I couldn't use nix-shell in a shebang line. I was playing with Hakyll. After
you use haykll-init to generate your project structure, all work is done by compiling your own

code (in this case, a site.hs that has an accompanying cabal file. Since something similar to the
example from the release notes didn't work, I tried the following, a variant of what I've used in .nix

files.

#! /usr/bin/env nix-shell
#! nix-shell -i bash --pure -p 'pkgs.haskellPackages.ghcWithPackages (pkgs: with pkgs

cabal run $@

But nix-shell didn't like this:

nafai@shedemei:~/Documents/blog/hakyll/technically

$./site-wrapper

error: syntax error, unexpected ')', at (string):1:66

So I had to just make this one a regular shell script:

#!/run/current-system/sw/bin/bash

nix-shell --pure \

 -p "pkgs.haskellPackages.ghcWithPackages (pkgs: with pkgs; [hakyll cabal-in
 --run "cabal run $@"

Anyway, just in these last few days I've found interesting ways to use this new capability. I hope this
gives some examples of how it may be used. I welcome any feedback from more experienced Nix
users (or comments in general about my scripting, I'm a little out of practice).

I intend to move this content to a blog hosted on my own server once I figure out a static blog
generator to use and all of that associated nonsense. Putting this here for now, I will update with a
pointer to the final location.

You can find me at @travisbhartwell or as Nafai on #nixos on freenode.net. Most of my personal
code can now be found on Gitlab, including my shell scripts and my current configurations for Nix OS,
bash, X, i3, and Spacemacs.

3noch commented on Jul 20, 2018

http://jaspervdj.be/hakyll/
http://twitter.com/travisbhartwell
http://freenode.net/
http://gitlab.com/u/travisbhartwell
http://nixos.org/
http://i3wm.org/
https://github.com/syl20bnr/spacemacs/
https://gist.github.com/travisbhartwell/f972aab227306edfcfea?permalink_comment_id=2653238#gistcomment-2653238
https://gist.github.com/3noch

Use " instead of ' in your hakyll shebang and it should work.

siers commented on Mar 3, 2019

This works

#! /usr/bin/env nix-shell

#! nix-shell -p "haskellPackages.ghcWithPackages (pkgs: with pkgs; [lens])" -i runhaskell

main = print 1

srid commented on Oct 11, 2019 •

To launch the script with ghcid (so as to re-compile whenever source file changes):

#! /usr/bin/env nix-shell

#! nix-shell -p ghcid -p "haskellPackages.ghcWithPackages (pkgs: with pkgs; [req])" -i "ghcid -c

'ghci -Wall' -T main"

main :: IO ()

main = do

 print True

Note that this also enables standard ghc warnings.

edited

piperswe commented on Nov 29, 2022

Does anyone happen to know if there's a way to do this with Flakes?

https://gist.github.com/travisbhartwell/f972aab227306edfcfea?permalink_comment_id=2852419#gistcomment-2852419
https://gist.github.com/siers
https://gist.github.com/travisbhartwell/f972aab227306edfcfea?permalink_comment_id=3052968#gistcomment-3052968
https://gist.github.com/srid
https://gist.github.com/travisbhartwell/f972aab227306edfcfea?permalink_comment_id=4385339#gistcomment-4385339
https://gist.github.com/piperswe

