
Move Fast and Break Nothing.

End-to-end typesafe APIs made easy.

Experience the full power of TypeScript inference to boost productivity

for your full-stack application.

Star 19,040 Quickstart

SUPPORTED BY

https://github.com/trpc/trpc/stargazers
https://trpc.io/docs/quickstart
https://cal.com/?ref=trpc
https://flightcontrol.dev/?ref=trpc
https://render.com/?ref=trpc

Automatic typesafety

Made a server side change? TypeScript will warn you of errors on your client before you even save the file!

Snappy DX

tRPC has no build or compile steps, meaning no code generation, runtime bloat or build step.

Framework agnostic

Compatible with all JavaScript frameworks and runtimes. It's easy to add to your existing projects.

Autocompletion

Using tRPC is like using an SDK for your API's server code, giving you confidence in your endpoints.

Light bundle size

tRPC has zero dependencies and a tiny client-side footprint making it lightweight.

Many thanks to all of our amazing sponsors!

https://cal.com/?ref=trpc
https://flightcontrol.dev/?ref=trpc
https://render.com/?ref=trpc
http://youarerad.org/?ref=trpc
https://ping.gg/
https://trpc.io/sponsor

Batteries included

We provide adapters for React, Next.js, Express, Fastify, AWS Lambda, Solid, Svelte, and more.

Simple to use with

unmatched developer experience

It's quick and easy to get started with tRPC to build a typesafe API.

1

Define your procedures

The first step to creating a tRPC API is to define your procedures.

Procedures are the functions we will use to build your backend. They're composable and can be queries,

mutations, or subscriptions. Routers contain multiple procedures.

In this procedure, we use a Zod validator to ensure the input from the client has exactly the shape that

our procedure expects. We will also return a simple text string from the query.

At the end of the file, we export the type of the router so we can use it in our frontend code in just a few

moments.

const t = initTRPC.create();

const router = t.router;

const publicProcedure = t.procedure;

const appRouter = router({

 greeting: publicProcedure

 .input(z.object({ name: z.string() }))

 .query((req) => {

 const { input } = req;

const input: {

 name: string;

}

 return {

https://github.com/colinhacks/zod

2

Create your HTTP server

Next, we create our HTTP server using our appRouter . We now have a tRPC server running!

tRPC has many adapters so it can meet you where you are. Next.js, Express, the Fetch API (Astro,

Remix, SvelteKit, Cloudflare Workers, etc.), Fastify, AWS Lambda, or a vanilla Node HTTP server.

3

Connect your client and start querying!

Now that we have the server running, we can create a client and start querying data.

We pass the AppRouter type when creating the client to give us TypeScript autocompletion and

Intellisense that matches the backend API without requiring any code generation!

 text: `Hello ${input.name}` as const,

 };

 }),

});

export type AppRouter = typeof appRouter;

const { listen } = createHTTPServer({

 router: appRouter,

});

// The API will now be listening on port 3000!

listen(3000);

const trpc = createTRPCProxyClient<AppRouter>({

 links: [

 httpBatchLink({

 url: 'http://localhost:3000/trpc',

 }),

],

});

const res = await trpc.greeting.query({ name: 'John' });

You may not need a traditional API

I built tRPC to allow people to move faster by removing the need of a traditional API-layer, while

still having confidence that our apps won't break as we rapidly iterate.

Try it out for yourself and let us know what you think!

Alex/KATT

Creator of tRPC

Don't take our word for it!

Many developers are loving tRPC and what it brings to them.

Theo - ping.gg

@t3dotgg
Sep 19

The amount that tRPC has improved the quality of our code, the speed of our delivery,

and the happiness of our devs is hard to comprehend.

I know I shill it a lot but seriously, please try @trpcio

R. Alex Anderson 🚀
@ralex1993

Sep 23

🤯 tRPC 10 enables VS Code's "Change All Occurrences" feature to work _across the

client/server boundary_!

In this video, I rename a procedure input using "Change All Occurrences", and that

const res: SerializeObject<UndefinedToOptional<{

 text: `Hello ${string}`;

}>>

http://twitter.com/alexdotjs
https://twitter.com/t3dotgg/status/1571922456239284224
https://twitter.com/t3dotgg
https://twitter.com/ralex1993/status/1573284779419930624
https://twitter.com/ralex1993

change propagates to anywhere the input is used across the entire app. 🤩

cc @trpcio

Kent C. Dodds 🌌
@kentcdodds

Sep 20

If I didn't already get end-to-end type safety from @remix_run, I would 100% be

investigating @trpcio very seriously. If you're not on Remix, I suggest you give it a look

👀

Sock, the dev 🧦
@sockthedev

Sep 13

If you are all in on TypeScript you MUST use tRPC for your API. No ifs, no buts.

tRPC destroys the boundary between frontend and backend. You get to focus on

building features for your app.

Best tool for time to market hyper mode.

Marry me @alexdotjs 💍

Lee Byron

@leeb
Dec 15

Hearing @t3dotgg and @mxstbr #tRPC and @GraphQL and find they agree that both

are awesome and there’s a time and a place for each 💖

Jökull Solberg

@jokull
Aug 23

tRPC is insane. I’m building a Stripe integration – I return Stripe API payloads from the

server I get the response data typed for my React components without even saving the

files, as if I’m using the Stripe library on the frontend not backend. /cc @alexdotjs

https://twitter.com/ralex1993/status/1573284779419930624
https://twitter.com/ralex1993/status/1573284779419930624
https://twitter.com/kentcdodds/status/1572304619468099584
https://twitter.com/kentcdodds
https://twitter.com/sockthedev/status/1569588272392990720
https://twitter.com/sockthedev
https://twitter.com/leeb/status/1603224872208908288
https://twitter.com/leeb
https://twitter.com/jokull/status/1562081793863475201
https://twitter.com/jokull

Christian Legge

@christian_legge
Sep 11

Spent all of yesterday learning and implementing @trpcio and wow, what a great

investment. I can't believe how much time I spent (read: wasted) validating and

parsing queries and responses!

Dominik 🇺🇦
@TkDodo

Sep 23

That being said, we _are_ starting a production project right now, and we're using

@nextjs with @trpcio . It's so good I don't even know where to start 🔥. Probably with

the e2e type-safety 😍

Haven't thought about client state much but the former probably applies.

Cory House

@housecor
Sep 11

@trpcio Love it.

Simple, strong types.

Feels like a more elegant choice than plain REST or GraphQL when using TS in a

monorepo.

Anders Bech Mellson

@andersmellson
Sep 12

Spent today playing with @trpcio v10 and I'm officially in love 😍 ps. Don't tell my wife

🙊

Mike | grabbou.eth 🚀
@grabbou

Sep 19

@t3dotgg @trpcio Totally. I am literally smiling every time I write a procedure, because

it reminds of how hard it used to be in the past. Built-in errors, typed middleware (that

can alter context), input validation. It's just massive!

https://twitter.com/christian_legge/status/1569033706131562496
https://twitter.com/christian_legge
https://twitter.com/TkDodo/status/1573391189373751297
https://twitter.com/TkDodo
https://twitter.com/housecor/status/1568983102931832835
https://twitter.com/housecor
https://twitter.com/andersmellson/status/1569341560646402051
https://twitter.com/andersmellson
https://twitter.com/grabbou/status/1571988844152786946
https://twitter.com/grabbou

Martin

@wikitable
Aug 23

💖 I'm sponsoring @alexdotjs because tRPC has helped to build apps faster.

github.com/sponsors/KATT?…

All Sponsors

We really love all of our amazing sponsors who help make sure tRPC is here

to stay.

https://twitter.com/wikitable/status/1561974448676171776
https://twitter.com/wikitable
https://trpc.io/sponsor
http://danielburger.online/?ref=trpc
https://stackoverflow.com/users/668245/kachar?ref=trpc
https://github.com/0mjs
https://jonas-strassel.de/?ref=trpc
https://github.com/AscentFactory
https://davidparks.dev/?ref=trpc
https://jobsinjs.com/?ref=trpc
https://jobsinjs.com/?ref=trpc
https://github.com/svobik7
https://github.com/andrew-werdna
https://www.linkedin.com/in/zomars/?ref=trpc
https://github.com/simonflk
http://www.ivanbuncic.com/?ref=trpc
https://github.com/fanvue
https://larskarbo.no/?ref=trpc
http://ballingt.com/?ref=trpc
https://mstill.dev/blog?ref=trpc
https://github.com/jzimmek
http://jwyce.gg/?ref=trpc
https://lindeneg.org/?ref=trpc
https://lindeneg.org/?ref=trpc
https://github.com/danielyogel
http://wyatt.dev/?ref=trpc
http://francisprovost.com/?ref=trpc
https://github.com/LoriKarikari
https://github.com/iway1
https://github.com/Sven1106
https://iamkhan.io/?ref=trpc
https://github.com/utevo
https://hampuskraft.com/?ref=trpc
https://www.illarionvk.com/?ref=trpc
https://elsakaan.dev/?ref=trpc
https://chrisbradley.dev/?ref=trpc
https://github.com/dmaykov
https://github.com/aslaker
http://t3.gg/?ref=trpc
https://patrickjs.com/?ref=trpc
https://farazpatankar.com/?ref=trpc
https://timcole.me/?ref=trpc
https://github.com/rondered
https://www.beekai.com/?ref=trpc
https://maxgreenwald.me/?ref=trpc
https://samholmes.net/?ref=trpc
https://yorick.sh/?ref=trpc
https://yorick.sh/?ref=trpc
http://solberg.is/?ref=trpc
http://solberg.is/?ref=trpc
http://flylance.com/?ref=trpc
https://interval.com/?ref=trpc
https://ahoylabs.xyz/?ref=trpc
https://snaplet.dev/?ref=trpc
https://github.com/hidrb
https://standardresume.co/r/ryan-edge?ref=trpc
http://echobind.com/?ref=trpc
https://www.newfront.com/?ref=trpc
https://www.newfront.com/?ref=trpc
https://www.prisma.io/?ref=trpc
https://ping.gg/
http://youarerad.org/?ref=trpc
https://render.com/?ref=trpc
https://render.com/?ref=trpc
https://flightcontrol.dev/?ref=trpc
https://cal.com/?ref=trpc

Become a Sponsor!

https://trpc.io/sponsor
https://lucasfsantos.com/?ref=trpc
https://jobsinjs.com/?ref=trpc
https://jobsinjs.com/?ref=trpc
https://josephlozano.dev/?ref=trpc
https://lindeneg.org/?ref=trpc
https://iamkhan.io/?ref=trpc
https://github.com/utevo
https://yorick.sh/?ref=trpc
https://yorick.sh/?ref=trpc
http://solberg.is/?ref=trpc
http://solberg.is/?ref=trpc
https://www.newfront.com/?ref=trpc
https://render.com/?ref=trpc
https://render.com/?ref=trpc

