
Filippo Valsorda

08 Jan 2023

SSH WHOAMI.FILIPPO.IO

This is an issue of Cryptography Dispatches, my lightly edited newsletter on
cryptography engineering. Subscribe via email or RSS.

I updated the whoami.filippo.io dataset over the holidays, so it
should be pretty accurate at least for a little while. If you already know what

I’m talking about, below are some tidbits about how I fetched the new
dataset and how it’s stored.

If you don’t, stop reading, and run this. I’ll wait.

$ ssh whoami.filippo.io

Here’s a picture of my grandmother's cat, to avoid spoilers.

https://filippo.io/
https://words.filippo.io/dispatches/rss/

Subscribe to Cryptography Dispatches for more!

Type your email...

Subscribe

What?!

There are two things going on here that might be unexpected.

The �rst is that the SSH protocol provides to the server all public keys the

client is willing to produce signatures for, which by default are all the public
keys in your ssh-agent and in your ~/.ssh/id_*. This is somewhat

unavoidable. You could technically make an authentication protocol that

doesn’t disclose public keys to a peer that didn’t already know them, but it
would be annoying: for example, you couldn’t use ECDSA or RSA without

�rst having the server prove knowledge of the public keys, because it’s

usually possible to recover the public key from those signatures. Having
the server prove knowledge of the public keys before the client uses them

is also kinda annoying, because you also don’t want the client to learn

about the public keys accepted by the server. You end up with a complex

interactive protocol that wastes round-trips.[1]

(This is also why we can do git clone git@github.com instead of
git clone FiloSottile@github.com. GitHub relies on the client

sharing its public keys to know who is trying to authenticate. Which is also

why you can’t use the same SSH key for two accounts.)

How it technically works is that the client sends public keys to the server

until the server answers that it likes one of them, and then the client sends

a signature from that key.[2] The client is allowed to skip the �rst part and
start sending signatures right away, but it doesn’t because producing a

signature might require user interaction (for example to decrypt the private

key or to enter the PIN of a hardware token) and it’s bad UX to require that
for a key the server will reject. This is also why age ciphertexts encrypted to

SSH keys carry a hash of the public key: to let the client know if it should
bother the user to decrypt an encrypted private key.

(A neat consequence is that you can test what public keys a server accepts
even without having the corresponding private key.)

The second thing going on that might be unexpected is that your GitHub
SSH keys are, well, public. For example, you can see mine at

https://github.com/FiloSottile.keys.

I knew this, what’s new?

https://github.com/FiloSottile.keys

whoami.filippo.io has been running since 2015, originally on a

dataset collected by Ben Cox. What’s new is that I now have a faster way to
refresh its keys database, and that it runs on new architecture.

The GitHub GraphQL API now includes users public keys, and since it

allows fetching 100 users per request and 5000 requests per hour[3] it’s
signi�cantly faster than using the REST API and the .keys endpoint. What

it lacks though is the ability to iterate through all users.

You can make a search for all users, which will tell you there are 97,616,627

users at the time of this writing, but you can only fetch at most 1000 results
from a search, and they don’t come in any clear order, so you can’t just

make the next search start where the previous one left o� (or I didn’t �gure

out how).

What you can do though is request accounts created in a certain time

range. If you get the time range right, so that it has less than 1000 entries,
you can paginate through it, and then request the next time range. This

was a little easier said than done, because of course registrations come in
waves and the rate changes over the years, but I eventually built a simple

adaptive algorithm that rarely overshot, and that went through all users in

less than a couple weeks without ever hitting the rate-limits. (That means it
could have been a little faster with some concurrency, but good enough.)

This is how the �nal GraphQL query looked like:

{
 search(
 type: USER
 query: "type:user created:{{ .From }}..{{ .To }}"
 first: 100
 {{ if .After }}after: "{{ .After }}"{{ end }}
) {
 userCount

https://blog.benjojo.co.uk/post/auditing-github-users-keys
https://github.com/FiloSottile/whoami.filippo.io/blob/55b7869fb475fc8c2888e3bf86adbe0a4da171be/cmd/refresh/refresh.go#L37-L65

 pageInfo {
 hasNextPage
 endCursor
 }
 edges {
 node {
 ... on User {
 databaseId
 publicKeys(first: 100) {
 nodes {
 key
 }
 }
 }
 }
 }
 }
}

Once I had all the keys as a nice ~5GB JSON Lines �le, I wanted to �nd a

way to deploy this that was simpler than the previous PostgreSQL
database. I played with some more complex ideas, but eventually I tried

making a two column SQLite database from a SHA-256(key)[:16]
PRIMARY KEY to the user ID and it was less than 400MB, small enough to

just embed in a Docker image deployed on Fly.io. (Hell, some base images

are that large.)

That’s how this runs now. No moving parts, and no need for me to

sysadmin anything. Bliss. You can see all the source at
https://github.com/FiloSottile/whoami.�lippo.io, although I have not

published the dataset. If you have a compelling analysis you want to run,

feel free to reach out. I am not too concerned about sharing it because it’s
all easily fetched public data anyway.

Have fun, and consider following me at @�lippo@abyssdomain.expert.

https://github.com/FiloSottile/whoami.filippo.io
https://abyssdomain.expert/@filippo

1. Figuring out what formal properties you need from your signatures for

privacy here is kinda interesting. Schnorr signatures like Ed25519 are
probably ok, but the formal formulation is left as an exercise to the

reader. ↩

2. Even more technically, the client sends the same message both to ask

if a key is good and to authenticate with it. In the former case without a
signature, in the latter with a signature. This always scared the hell out

of me, because there must be an implementation out there that can

be tricked to take the message-with-signature code path even if the
signature is not there, which would let an attacker authenticate by just

knowing the right public key. ↩

3. Sort of, it’s 5000 points per hour, but our requests cost one point each.

↩

Subscribe to Cryptography Dispatches for more!

Type your email...

Subscribe

https://crypto.stackexchange.com/questions/39941/hmac-with-public-private-key/67918#67918

