LA

e Articles

e Atoms

e Fragments
o Newsletter
e Now

e About

Fragment
Easy, alternative soft deletion: "deleted_record_insert’

Published
December 28, 2022

Find me on Twitter at @brandur.

Eragments

Easy, alternative soft deletion: "deleted_record_insert

A few months back I wrote Soft deletion probably isn’t worth it (referring to the traditional strategy of putting a deleted at
column in each table), an assertion that I still stand behind. I’ve spent the time migrating our code away from deleted at,
and we’re now at the point where it’s only left on a couple core tables where we want to retain deleted records for an
exceptionally long time for debugging purposes.

Nearer to the end of the article I suggest an alternative to deleted at called deleted record, a separate schemaless table
that gets a full dump of deleted data, but which doesn’t interfere with mainline code (no need to include a deleted at IS

NULL predicate in every live query, no foreign key problems), and without the expectation that it’ll be used to undelete data
(which probably wouldn’t work for deleted at anyway).

CREATE TABLE deleted record (

id uuid PRIMARY KEY DEFAULT gen ulid(),

data jsonb NOT NULL,

deleted at timestamptz NOT NULL DEFAULT current timestamp,

object id uuid NOT NULL,

table name varchar(200) NOT NULL,

updated at timestamptz NOT NULL DEFAULT current timestamp
);

Previously, I’d suggested manually writing deleted record into each deletion query, but we’ve seen found a much cleaner
way to do it. Here’s a function which will generically insert a deleted record from any source table:

CREATE FUNCTION deleted record insert() RETURNS trigger
LANGUAGE plpgsql

AS $%
BEGIN
EXECUTE 'INSERT INTO deleted record (data, object id, table name) VALUES ($1, $2, $3)'
USING to jsonb(OLD.*), OLD.id, TG TABLE NAME;
RETURN OLD;
END;
$$;

Invoke it as an AFTER DELETE trigger on any table for which you want to retain soft deletion records:

CREATE TRIGGER deleted record insert AFTER DELETE ON credit
FOR EACH ROW EXECUTE FUNCTION deleted record insert();
CREATE TRIGGER deleted record insert AFTER DELETE ON discount
FOR EACH ROW EXECUTE FUNCTION deleted record insert();
CREATE TRIGGER deleted record insert AFTER DELETE ON invoice
FOR EACH ROW EXECUTE FUNCTION deleted record insert();

https://brandur.org/
https://brandur.org/articles
https://brandur.org/atoms
https://brandur.org/fragments
https://brandur.org/newsletter
https://brandur.org/now
https://brandur.org/about
https://twitter.com/brandur
https://brandur.org/fragments
https://brandur.org/soft-deletion

Speaking from 30,000 feet, programming is all about tradeoffs. However, this is one of those rare places where as far as I
can tell the cost/benefit skew is so disproportionate that the common platitude falls flat.

Since introducing this pattern months ago I haven’t detected a single problem as it’s happily worked away in the background
without issue and there hasn’t been a moment where I’ve found myself wishing that I had deleted at back. During this

time we’ve undoubtedly saved ourselves from dozens of bugs and countless hours of debugging time as people accidentally
omit deleted at IS NULL from production and analytical queries.

A++ programming pattern. Would implement again.

Fragment
Easy, alternative soft deletion: “deleted_record_insert’

Published
December 28, 2022

Find me on Twitter at @brandur.

Did I make a mistake? Please consider sending a pull request.

https://twitter.com/brandur
https://github.com/brandur/sorg/edit/master/content/fragments/deleted-record-insert.md

