
△

Articles
Atoms
Fragments
Newsletter
Now
About

Fragment
Easy, alternative soft deletion: `deleted_record_insert`

Published
December 28, 2022

Find me on Twitter at @brandur.

Fragments

Easy, alternative soft deletion: `deleted_record_insert`
A few months back I wrote Soft deletion probably isn’t worth it (referring to the traditional strategy of putting a deleted_at
column in each table), an assertion that I still stand behind. I’ve spent the time migrating our code away from deleted_at,
and we’re now at the point where it’s only left on a couple core tables where we want to retain deleted records for an
exceptionally long time for debugging purposes.

Nearer to the end of the article I suggest an alternative to deleted_at called deleted_record, a separate schemaless table
that gets a full dump of deleted data, but which doesn’t interfere with mainline code (no need to include a deleted_at IS
NULL predicate in every live query, no foreign key problems), and without the expectation that it’ll be used to undelete data
(which probably wouldn’t work for deleted_at anyway).

CREATE TABLE deleted_record (

 id uuid PRIMARY KEY DEFAULT gen_ulid(),

 data jsonb NOT NULL,

 deleted_at timestamptz NOT NULL DEFAULT current_timestamp,

 object_id uuid NOT NULL,

 table_name varchar(200) NOT NULL,

 updated_at timestamptz NOT NULL DEFAULT current_timestamp

);

Previously, I’d suggested manually writing deleted_record into each deletion query, but we’ve seen found a much cleaner
way to do it. Here’s a function which will generically insert a deleted record from any source table:

CREATE FUNCTION deleted_record_insert() RETURNS trigger

 LANGUAGE plpgsql

AS $$

 BEGIN

 EXECUTE 'INSERT INTO deleted_record (data, object_id, table_name) VALUES ($1, $2, $3)'

 USING to_jsonb(OLD.*), OLD.id, TG_TABLE_NAME;

 RETURN OLD;

 END;

$$;

Invoke it as an AFTER DELETE trigger on any table for which you want to retain soft deletion records:

CREATE TRIGGER deleted_record_insert AFTER DELETE ON credit

 FOR EACH ROW EXECUTE FUNCTION deleted_record_insert();

CREATE TRIGGER deleted_record_insert AFTER DELETE ON discount

 FOR EACH ROW EXECUTE FUNCTION deleted_record_insert();

CREATE TRIGGER deleted_record_insert AFTER DELETE ON invoice

 FOR EACH ROW EXECUTE FUNCTION deleted_record_insert();

https://brandur.org/
https://brandur.org/articles
https://brandur.org/atoms
https://brandur.org/fragments
https://brandur.org/newsletter
https://brandur.org/now
https://brandur.org/about
https://twitter.com/brandur
https://brandur.org/fragments
https://brandur.org/soft-deletion

Speaking from 30,000 feet, programming is all about tradeoffs. However, this is one of those rare places where as far as I
can tell the cost/benefit skew is so disproportionate that the common platitude falls flat.

Since introducing this pattern months ago I haven’t detected a single problem as it’s happily worked away in the background
without issue and there hasn’t been a moment where I’ve found myself wishing that I had deleted_at back. During this
time we’ve undoubtedly saved ourselves from dozens of bugs and countless hours of debugging time as people accidentally
omit deleted_at IS NULL from production and analytical queries.

A++ programming pattern. Would implement again.

Fragment
Easy, alternative soft deletion: `deleted_record_insert`

Published
December 28, 2022

Find me on Twitter at @brandur.

Did I make a mistake? Please consider sending a pull request.

https://twitter.com/brandur
https://github.com/brandur/sorg/edit/master/content/fragments/deleted-record-insert.md

