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PostgREST 11 is not wrapped up yet, however a pre-

release with the  is available on

the Supabase CLI.

In this blog post we'll cover some of the improved

querying capabilities: spreading related tables, related

orders and anti-joins.
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Spreading related tables

Very often the way we structure a database is not the

way we want to present it to the frontend application.

For example, let's assume we have a films  and techn

ical_specs  tables and they form a one-to-one

relationship.

Using PostgREST resource embedding, we can query

them in one request like so

From HTTP:

or JavaScript :

Response:

But we'd like to present a “flattened” result to the

frontend, without the technical_specs  object. For

this we could create a new database view or function

that shapes the json the way we want, but creating

extra database objects is not always convenient.

GET /films?select=title,technical_specs(camera,

const { data, error } = await supabase.from('fi

    title,

    technical_specs (

      camera, laboratory, duration

    )

  `)

[

  {

    "title": "Pulp Fiction",

    "technical_specs": {

      "camera": "Arriflex 35-III",

      "laboratory": "DeLuxe, Hollywood (CA), US

      "duration": "02:34:00"

    }

  },

  "..."

]



Using the new “spread” operator(syntax borrowed from

), we can expand a related table columns and remove

the nested object.

From HTTP:

or JavaScript :

Response:

This only works for one-to-one and many-to-one

relationships for now but we're looking at ways to

remove this restriction.

Order by related tables

It 's also a common use case to order a table by a

related table column. For example, suppose you'd like to

order films  based on the technical_specs.duratio

n  column.

You can now do it like so:

From HTTP:

JS

GET /films?select=title,...technical_specs(came

const { data, error } = await supabase.from('fi

    title,

    ...technical_specs (

      camera, laboratory, duration

    )

  `)

[

  {

    "title": "Pulp Fiction",

    "camera": "Arriflex 35-III",

    "laboratory": "DeLuxe, Hollywood (CA), USA 

    "duration": "02:34:00"

  },

  "..."

]

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Spread_syntax


or JavaScript :

Response:

Similarly to spreading related tables, this only works for

one-to-one and many-to-one relationships.

Anti-Joins

To do the equivalent of a left anti-join, you can now

filter the rows where the related table is null .

From HTTP:

or JavaScript :

GET /films?select=title,...technical_specs(dura

const { data, error } = await supabase

  .from('films')

  .select(`

    title,

    ...technical_specs (

      duration

    )

  `)

   .order('technical_specs(duration)', { descen

[

  {

    "title": "Amra Ekta Cinema Banabo",

    "duration": "21:05:00"

  },

  {

    "title": "Resan",

    "duration": "14:33:00"

  },

  "..."

]

GET /films?select=title,nominations()&nominatio

const { data, error } = await supabase

  .from('films')

  .select(`



Response:

Note that nominations  doesn't select any columns so

they don't show on the resulting response.

The equivalent of an inner join can be done by filtering

the rows where the related table is not null .

Response:

    title,

    nominations()

  `)

   .is('nominations', null))

[

  {

    "title": "Memories of Murder"

  },

  {

    "title": "Rush"

  },

  {

    "title": "Groundhog Day"

  },

  "..."

]

GET /films?select=title,nominations(rank,...com

const { data, error } = await supabase

  .from('films')

  .select(

    `

    title,

    nominations(rank,...competitions(name))

  `

  )

  .not('nominations', 'is', null)

[

  {

    "title": "Pulp Fiction"

    "nominations": [

      {"rank": 1, "name": "Palme d'Or"},

      {"rank": 1, "name": "BAFTA Film Award"},

      {"..."}



This was already possible with the !inner

modifier( ) but the not nul

l  filter is more flexible and can be used with an 

to combine related tables' conditions.

Try it out

This pre-release is not deployed to Supabase cloud but

you can try it out locally with the .

Please try it and report any bugs, suggestions or ideas!
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    ]

  },

  "..."

]
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