
Back

Blog post

PostgREST 11 pre-release
2022-12-16 • 5 minute read

Steve Chavez
Engineering & PostgREST maintainer

PostgREST 11 is not wrapped up yet, however a pre-

release with the is available on

the Supabase CLI.

In this blog post we'll cover some of the improved

querying capabilities: spreading related tables, related

orders and anti-joins.

latest features and fixes

https://supabase.com/blog
https://github.com/steve-chavez
https://github.com/PostgREST/postgrest/releases/tag/v10.1.1.20221212
https://supabase.com/

Spreading related tables

Very often the way we structure a database is not the

way we want to present it to the frontend application.

For example, let's assume we have a films and techn

ical_specs tables and they form a one-to-one

relationship.

Using PostgREST resource embedding, we can query

them in one request like so

From HTTP:

or JavaScript :

Response:

But we'd like to present a “flattened” result to the

frontend, without the technical_specs object. For

this we could create a new database view or function

that shapes the json the way we want, but creating

extra database objects is not always convenient.

GET /films?select=title,technical_specs(camera,

const { data, error } = await supabase.from('fi

 title,

 technical_specs (

 camera, laboratory, duration

)

 `)

[

 {

 "title": "Pulp Fiction",

 "technical_specs": {

 "camera": "Arriflex 35-III",

 "laboratory": "DeLuxe, Hollywood (CA), US

 "duration": "02:34:00"

 }

 },

 "..."

]

Using the new “spread” operator(syntax borrowed from

), we can expand a related table columns and remove

the nested object.

From HTTP:

or JavaScript :

Response:

This only works for one-to-one and many-to-one

relationships for now but we're looking at ways to

remove this restriction.

Order by related tables

It 's also a common use case to order a table by a

related table column. For example, suppose you'd like to

order films based on the technical_specs.duratio

n column.

You can now do it like so:

From HTTP:

JS

GET /films?select=title,...technical_specs(came

const { data, error } = await supabase.from('fi

 title,

 ...technical_specs (

 camera, laboratory, duration

)

 `)

[

 {

 "title": "Pulp Fiction",

 "camera": "Arriflex 35-III",

 "laboratory": "DeLuxe, Hollywood (CA), USA

 "duration": "02:34:00"

 },

 "..."

]

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Spread_syntax

or JavaScript :

Response:

Similarly to spreading related tables, this only works for

one-to-one and many-to-one relationships.

Anti-Joins

To do the equivalent of a left anti-join, you can now

filter the rows where the related table is null .

From HTTP:

or JavaScript :

GET /films?select=title,...technical_specs(dura

const { data, error } = await supabase

 .from('films')

 .select(`

 title,

 ...technical_specs (

 duration

)

 `)

 .order('technical_specs(duration)', { descen

[

 {

 "title": "Amra Ekta Cinema Banabo",

 "duration": "21:05:00"

 },

 {

 "title": "Resan",

 "duration": "14:33:00"

 },

 "..."

]

GET /films?select=title,nominations()&nominatio

const { data, error } = await supabase

 .from('films')

 .select(`

Response:

Note that nominations doesn't select any columns so

they don't show on the resulting response.

The equivalent of an inner join can be done by filtering

the rows where the related table is not null .

Response:

 title,

 nominations()

 `)

 .is('nominations', null))

[

 {

 "title": "Memories of Murder"

 },

 {

 "title": "Rush"

 },

 {

 "title": "Groundhog Day"

 },

 "..."

]

GET /films?select=title,nominations(rank,...com

const { data, error } = await supabase

 .from('films')

 .select(

 `

 title,

 nominations(rank,...competitions(name))

 `

)

 .not('nominations', 'is', null)

[

 {

 "title": "Pulp Fiction"

 "nominations": [

 {"rank": 1, "name": "Palme d'Or"},

 {"rank": 1, "name": "BAFTA Film Award"},

 {"..."}

This was already possible with the !inner

modifier() but the not nul

l filter is more flexible and can be used with an

to combine related tables' conditions.

Try it out

This pre-release is not deployed to Supabase cloud but

you can try it out locally with the .

Please try it and report any bugs, suggestions or ideas!

More Launch Week 6

]

 },

 "..."

]

introduced on PostgREST 9

or filter

Supabase CLI

$ supabase start

Day 1: New Supabase Docs, built with Next.js

Day 2: Supabase Storage v2: Image resizing and

Smart CDN

Day 3: Multi-factor Authentication via Row Level

Security Enforcement

Day 4: Supabase Wrappers, a Postgres FDW

framework written in Rust

Day 5: Supabase Vault is now in Beta

Community Day

Point in Time Recovery is now available

Custom Domain Names are now available

Wrap Up: everything we shipped

https://supabase.com/blog/postgrest-9#resource-embedding-with-inner-joins
https://supabase.com/docs/reference/javascript/or
https://supabase.com/docs/reference/cli/introduction
https://supabase.com/blog/new-supabase-docs-built-with-nextjs
https://supabase.com/blog/storage-image-resizing-smart-cdn
https://supabase.com/blog/mfa-auth-via-rls
https://supabase.com/blog/postgres-foreign-data-wrappers-rust
https://supabase.com/blog/vault-now-in-beta
https://supabase.com/blog/launch-week-6-community-day
https://supabase.com/blog/postgres-point-in-time-recovery
https://supabase.com/blog/custom-domain-names
https://supabase.com/blog/launch-week-6-wrap-up

Share this article

Last post

Supabase Vault is now in Beta
16 December 2022

Next post

Point in Time Recovery is now available for

Pro projects
16 December 2022

Related articles

Supabase Vault is now in Beta

PostgREST 11 pre-release

Point in T ime Recovery is now available for Pro projects

pg_graphql v1.0

What's new in Postgres 15?

View all posts

Build in a weekend, scale to millions

https://twitter.com/share?text=PostgREST%2011%20pre-release&url=https://supabase.com/blog/postgrest-11-prerelease
https://www.linkedin.com/shareArticle?url=https://supabase.com/blog/postgrest-11-prerelease&title=PostgREST%2011%20pre-release
https://supabase.com/blog

Start your project

Product

Database

Auth

Functions

Realtime

Storage

Pricing

Beta

Resources

Support

System Status

Integrations

Experts

Brand Assets / Logos

DPA

SOC2

Developers

Documentation

Changelog

Contributing

Open Source

SupaSquad

DevTo

RSS

Company

Blog

Careers

Company

Terms of Service

Privacy Policy

Acceptable Use Policy

Service Level Agreement

Humans.txt

Lawyers.txt

https://app.supabase.com/
https://supabase.com/
https://twitter.com/supabase
https://github.com/supabase
https://discord.supabase.com/
https://youtube.com/c/supabase
https://supabase.com/database
https://supabase.com/auth
https://supabase.com/edge-functions
https://supabase.com/realtime
https://supabase.com/storage
https://supabase.com/pricing
https://supabase.com/beta
https://supabase.com/support
https://status.supabase.com/
https://supabase.com/partners/integrations
https://supabase.com/partners/experts
https://supabase.com/brand-assets
https://supabase.com/legal/dpa
https://forms.supabase.com/soc2
https://supabase.com/docs
https://supabase.com/changelog
https://supabase.com/docs/handbook/contributing
https://supabase.com/oss
https://supabase.com/supasquad
https://dev.to/supabase
https://supabase.com/rss.xml
https://supabase.com/blog
https://supabase.com/careers
https://supabase.com/company
https://supabase.com/terms
https://supabase.com/privacy
https://supabase.com/aup
https://supabase.com/sla
https://supabase.com/humans.txt
https://supabase.com/lawyers.txt

Security.txt

© Supabase Inc

https://supabase.com/.well-known/security.txt

