
LocalghostLocalghostLocalghostLocalghostLocalghostLocalghostLocalghostLocalghostLocalghostLocalghostLocalghostLocalghostLocalghostLocalghost

about blog speaking links

Building a website like it's 1999... in
2022

23 October 2022 Tags: nostalgia fun css conferences

Note: This is a written version of a talk I gave at State of the Browser

2022 in October 2022!

Motion warning: This page contains quite a few animations, but if you

have reduced motion turned on, they won't play.

The web used to be weirder

I'm on a bit of a mission this year to bring back the spirit of the old web.

The creativity and flair of the late 90s and early 2000s. Back then, there

were no rules – you put whatever you wanted on a webpage, because it
was your space to do as you please.

And for a whole generation of internet users, having a website was the

cool thing to do. It's just what you did back then. We're talking pre-social
media, pre-web 2.0 – the good old fashioned static personal home page.

Sites like Geocities, Angelfire, Tripod and Expage offered free static

hosting for all, and the number of personal websites boomed. Some

more stuff

https://localghost.dev/
https://localghost.dev/about
https://localghost.dev/blog
https://localghost.dev/talks
https://localghost.dev/links
https://localghost.dev/tag/nostalgia/
https://localghost.dev/tag/fun/
https://localghost.dev/tag/css/
https://localghost.dev/tag/conferences/

hosts offered drag-and-drop website builders so you didn't even have to

learn HTML.

We might look back on these websites now and laugh – they look

ridiculous compared to the sleek and minimalist sites we're used to

nowadays. But I actually think we've gone too far in the other direction,
and now so many websites look the same. These old personal websites

were a reflection of yourself.

Some of these websites were for family to share photos and updates...

The Proud Grandparents Page

...while others were full of graphics to share and use on your own site...

https://geocities.restorativland.org/Heartland/Ridge/1217/

Lisa's Graphics

...and some were fansites. Look at those frames! I got this screenshot

mid-<marquee>-scroll as well.

Mognet Central

I played a game a couple of years ago called Hypnospace Outlaw, which

is a completely bonkers game where you're a moderator of a version of
the 90s web that you access in your sleep. The homepages in this game

were directly inspired by Geocities websites (there's a really good

episode of Noclip about it) and it made me so nostalgic. I really

recommend it if you haven't played it already! It really captures the spirit

https://www.oocities.org/siliconvalley/haven/1520/
https://www.oocities.org/hcdohl/
https://www.hypnospace.net/
https://noclippodcast.net/episodes/2021/5/22/noclip-pocket-e42-big-winrar-energy-hypnospace-outlaw

of the time – the personality and weirdness that made these sites so

special.

Hypnospace Outlaw

Let's bring back the weird

I'd love to see this spirit return today – the experimental and fun side of

the web. My goal is to show you how we can be just as creative today

but using modern and accessible methods. Because, as fun as they

were, old websites were a nightmare for accessibility. We didn't really
use semantic HTML, we used tables for layouts (instead of, y'know,

tabular data), everything was constantly flashing and moving. Luckily for

us, the modern web allows us to be just as creative while still considering
the user at the other end of the browser.

So naturally, I built a 90s-style website, with some of my favourite old

web tropes. I used as much modern HTML, CSS and JS as I could. Let's
take a look through some of the features and how we might recreate

them!

https://www.hypnospace.net/
https://sophie-sotb22.neocities.org/

Sophie's Homepage

Animated GIFs

GeoCities sites were absolutely littered with GIFs. Flames, construction

workers, dividers, even animated bullet points. Animations were a lot of

fun, and almost an art form to squeeze so much into such a tiny filesize.

This is a screenshot from cameronsworld.net, which is a beautiful

archive of GeoCities GIFs, and an artwork in itself.

Nowadays it's easier than ever to put animations on our sites, whether

that's still the humble GIF (internet is so much faster these days), more

https://sophie-sotb22.neocities.org/
https://cameronsworld.net/

modern formats like webm and gifv, or even SVG animation with CSS or

libraries like GreenSock. But we can do better still.

The standard code to include an image hasn't changed much since the

olden days:

<<IMGIMG SRCSRC==""flames.gifflames.gif"">>

In those days, of course, we wrote all our HTML in capitals because that

was what you did for some reason. XHTML, maybe? Anyway, the
consequence of this is that everyone sees the GIF whether they like it or

not. For people with epilepsy, vestibular disorders, or anything where

motion causes sickness, autoplaying GIFs are a big problem. Luckily,

wcan fix this today, with something we didn't have back then!

The prefers-reduced-motion media query

Using this media query, we can only play the GIF if the user doesn't have

reduced motion turned on on their computer – so everyone can enjoy
our trash website, regardless of their access needs.

Harnessing media queries with the picture element

The HTML5 picture element allows us to specify an image, and then

potential alternative sources for it.

<<picturepicture>>

 <<sourcesource srcsetsrcset==""underconstruction.gifunderconstruction.gif""

 mediamedia==""(prefers-reduced-motion: no-preference)(prefers-reduced-motion: no-preference)"">>

 <<imgimg srcsrc==""underconstruction.pngunderconstruction.png""

 altalt==""Under constructionUnder construction"" />/>

 </</picturepicture>>

In the above code snippet, we've got the img tag as before, but this time

it's showing a still version of the GIF, which I made by opening the GIF in

Preview, pulling out the first frame and saving it as a PNG. The source

tag contains the URL of the GIF, and will only kick in if its media attribute

is satisfied. So if you don't have reduced motion enabled, the source of

the image will be replaced by the animated GIF version. Magic!

Text effects

Remember <marquee>? It made text scroll across the screen, like ticker

tape.

Or those of you with Netscape would have had the infamous <blink>

tag, which makes text blink in and out of view...

Ultimately, text effects like this don't belong in body text. Even if you

don't have any access needs to speak of, it makes reading text really

hard. There's a good reason they were both deprecated.

Instead, I thought, why not have fun with headers? In days of yore we'd

make cool text-based headers in whatever graphics programs we could

get our hands on – or even just MS Word. Text with flames, rainbow

fonts, you name it.

These days we can recreate this magic using CSS instead of using an

image! And the great news is, because it's normal text with CSS doing the

heavy lifting, it's still totally accessible.

For my next trick, I'm drawing inspiration from an OG 90s classic:

Microsoft WordArt.

Whe

WordArt, but make it CSS

While not strictly from the 90s web, WordArt for me harks back to the
aesthetic of 90s maximalism, and definitely fits aesthetically with what I'm

trying to do.

I'm going to show you how to recreate two of my classic favourite
WordArt styles using modern CSS.

Gradient-fill text with background-clip

You can't colour text with a gradient (yet) in CSS, but you can give an

element a gradient fill background. Using the background-clip

property we can control where the background shows. Specifically, we

https://developer.mozilla.org/en-US/docs/Web/CSS/background-clip

can set background-clip: text to make the background only show

wherever there's text in the element.

Then, if we make the actual text transparent, only the gradient

background will show through.

backgroundbackground:: linear-gradientlinear-gradient((183deg183deg,, #6000CA 10% #6000CA 10%,, #CA00CD #CA00CD

background-clipbackground-clip:: text text;;

-webkit-background-clip-webkit-background-clip:: text text;;

colorcolor:: transparent transparent;;

font-familyfont-family:: 'Impact''Impact';;

Pretty!

Then let's add a transform property to make it look a bit more like the

real deal.

transformtransform:: skewYskewY((-8deg-8deg)) scaleYscaleY((1.31.3)) scaleXscaleX((0.80.8));;

Adding the drop shadow

Now we need to add the light purple drop shadow. But if we try to use

the text-shadow property, it shows up on top of the text!

This is because we're really looking at the background – the actual text is
transparent and sitting on top. If I change the colour of the text to the

body colour, you'll see what I mean:

To get around this, we'll need a wrapper element that contains the

shadow, so it appears behind the text-shaped gradient background.

<<spanspan classclass==""purple-wordart-wrapperpurple-wordart-wrapper"">>

<<spanspan classclass==""purple-wordartpurple-wordart"">>WordArtWordArt</</spanspan>>

</</spanspan>>

We'll add a drop-shadow filter to the wrapper element. This adds a

drop-shadow the same shape as the element's children, and because the
background is clipped to the text in the child span, the drop-shadow will

follow that shape too!

.wordart-wrapper.wordart-wrapper {{

filterfilter:: drop-shadowdrop-shadow((2px 2px 0px 2px 2px 0px rgbargba((130130,, 140 140,, 251 251,,

}}

The result:

WordArt

WordArtWordArt

Uncanny!

For my second WordArt recreation, I'm bringing back my old childhood
favourite – the rainbow one. I remember using this one all over my

primary school homework.

We've got another gradient fill here, so we'll use background-clip:

text again to get the same effect, and chuck on a transform to get the

right shape.

backgroundbackground:: linear-gradientlinear-gradient((

 90deg 90deg,,

 #9c00ff #9c00ff,,

 #ff0000 #ff0000,,

 #ff8800 #ff8800,,

 #ffff00 #ffff00,,

 #02be02 #02be02,,

 #0000ff #0000ff,,

 #4f00ff #4f00ff,,

 #9c00ff #9c00ff

));;

background-clipbackground-clip:: text text;;

-webkit-background-clip-webkit-background-clip:: text text;;

colorcolor:: transparent transparent;;

font-familyfont-family:: 'Arial Black''Arial Black',, sans-serif sans-serif;;

font-weightfont-weight:: bold bold;;

transformtransform:: scaleYscaleY((1.51.5)) scaleXscaleX((0.60.6));;

transform-origintransform-origin:: left left;;

We'll use a wrapper element to create the shadow again, but this time it's
a little different. This has more of a 3D effect, where the shadow kind of

flattens and goes to the left, as if we're looking at the WordArt from the

front.

CSS can do that!

Getting some perspective

.wrapper.wrapper {{

 font-familyfont-family:: 'Arial Black''Arial Black',, sans-serif sans-serif;;

 font-weightfont-weight:: bold bold;;

 displaydisplay:: inline-block inline-block;;

 positionposition:: relative relative;;

 perspectiveperspective:: 150px 150px;;

 perspective-originperspective-origin:: bottom center bottom center;;

}}

We can use the perspective property to put us into a kind of "3D

mode". It tells the browser, "act as though I'm standing this far away from

the element". In our case, 150px.

We then set the perspective-origin property to determine what

position we're looking at the element from. I want it to seem like we're in

front of it, at the bottom.

What this will do is change the way that transformations apply to the

element, taking into account the perspective to manipulate it along the Z-

axis as well as X and Y.

To create a shadow effect I'll target the wrapper::before

pseudoelement, and set its content to "WordArt" to mirror the text. This

will make the "shadow" text appear behind the rainbow gradient. Then I'll

apply some transformations to skew the "shadow" – that perspective

property on the wrapper element will change the way it rotates and

skews.

(This one needs a bit more hacky wrangling when you change the font

size, and I use fluid typescales so I'm going to embed a Codepen a bit
further down instead of rendering it inline!)

.wrapper::before.wrapper::before {{

 positionposition:: absolute absolute;;

 contentcontent:: 'WordArt''WordArt';;

 colorcolor:: #000 #000;;

 opacityopacity:: 0.2 0.2;;

 bottombottom:: -2rem -2rem;;

 leftleft::35%35%;;

 transformtransform:: rotateXrotateX((60deg60deg)) skewXskewX((65deg65deg))

 scaleYscaleY((2.82.8)) scaleXscaleX((0.90.9));;

 transform-origintransform-origin:: bottom right bottom right;;

}}

Right now, the CSS is hardcoded to have a shadow that says "WordArt".

If we want to use this text style for other things too, how can we
dynamically set the shadow text content? With the CSS attr() function!

attr() gets the content of a given attribute for an element. I've called

mine data-content. So, in our wrapper::before rule, content:

'WordArt' becomes content: attr(data-content):

.wrapper::before.wrapper::before {{

 positionposition:: absolute absolute;;

 contentcontent:: attrattr((data-contentdata-content));;

 colorcolor:: #000 #000;;

 opacityopacity:: 0.2 0.2;;

 bottombottom:: -1rem -1rem;;

 transformtransform:: rotateXrotateX((60deg60deg)) skewXskewX((60deg60deg))

 scaleYscaleY((2.82.8)) scaleXscaleX((0.80.8));;

 transform-origintransform-origin:: bottom right bottom right;;

}}

And render the HTML with the attribute:

<<spanspan classclass==""rainbow-wrapperrainbow-wrapper"" data-contentdata-content==""RainbowRainbow"">>

 <<spanspan classclass==""rainbowrainbow"">>RainbowRainbow</</spanspan>>

</</spanspan>>

Now we can write different words!

Run Pen

Resources

HTML SCSS
E D I T O N

Result

1× 0.5× 0.25× Rerun

It's not perfect, but I think that looks good enough for a throwback site

header!

Music

In 2001, I had a NeoPets shop. As soon as you loaded the page, you'd be

greeted with the dulcet tones of Teenage Dirtbag, in MIDI form.

<<EMBEDEMBED SRCSRC==""mysong.midmysong.mid"" HIDDENHIDDEN==""truetrue""

 looploop==""yesyes"" volumevolume==""1010"" autostartautostart==""truetrue"">>

Autoplay, naturally, and looping. Definitely hidden, so the music was just
there. But it was super distracting, quite disorientating, and you couldn't

turn it off.

Modern browsers block autoplaying audio, for good reason. It's
extremely annoying. Thankfully, the HTML5 audio element gives us a bit

more control.

 <<audioaudio aria-labelaria-label==""Play musicPlay music"" controlscontrols

 srcsrc==""/soundtrack.webm/soundtrack.webm"">></</audioaudio>>

You can still have audio on your website! Just make it opt-in. If it's part of

the experience you want to create, that's totally fine, as long as your

https://codepen.io/sophiekoonin/embed/qBKmzmR?default-tab=result&theme-id=dark
https://codepen.io/sophiekoonin/embed/qBKmzmR?default-tab=result&theme-id=dark
https://codepen.io/sophiekoonin/pen/qBKmzmR

viewer is okay with it playing.

Make sure to add a label – whether external or aria-label – to tell the

user what it does.

The controls that show up are the browser default – what's rendered

above will look different depending on whether you're in Chrome,

Firefox, etc. But you can use the Web Audio API to customise the
controls, by rendering some pretty buttons and using JavaScript to make

them control playing audio.

Cursor trails

Then: Dynamic HTML

Back in the day, a cursor trail was a real flex. It said, "look at what I can

do with JavaScript!". (Or in my case, what dynamicdrive.com could do

with JavaScript.)

This was known as Dynamic HTML: not necessarily a technology in its

own right, but a collection of technologies (a bit like we use the term

JAMstack now). HTML, CSS and JavaScript – but a very old version of
JavaScript. Everything was client-side at this time, because we didn't

have AJAX/client HTTP requests yet. And the implementations differed

significantly between the two major browsers of the time, Internet

Explorer and Netscape. (This is a period known as the 'Browser Wars',
and there's a good summary of it on The History Of The Web.)

It led to stuff like this, from a Dancing Stars animated cursor trail. This

cursor adds a trail of seven 3px-wide yellow "stars" (tiny squares) that
appear to follow your cursor around. I can't show you a preview,

because the script doesn't work any more.

First we had to check whether the script was running in IE, or Netscape,
because the implementation would be completely different. In IE, we'd

check for the existence of document.all, a function which returned all

the elements in the DOM.

0:000:00 / 3:33/ 3:33

https://developer.mozilla.org/en-US/docs/Web/API/Web_Audio_API/Using_Web_Audio_API#controlling_sound
https://dynamicdrive.com/
https://thehistoryoftheweb.com/browser-wars/
https://www.dynamicdrive.com/dynamicindex13/star.htm

If this was present, we'd then call document.write (a function we also

shouldn't use any more) to insert several little 3px <div> squares into

the DOM.

ifif ((documentdocument..allall)) {{

 document document..writewrite((''<<div iddiv id=="starsDiv""starsDiv"

 style style=="position:absolute;top:0px;left:0px""position:absolute;top:0px;left:0px">>''))

 forfor ((xy xy == 00;; xy xy << 77;; xy xy++++))

 document document..writewrite((''<<div stylediv style=="position"position::relativerelative;;

 widthwidth::3px3px;;heightheight::3px3px;;backgroundbackground::##FFFF00FFFF00;;

 font font--sizesize::2px2px;;visibilityvisibility::visible"visible">><<//divdiv>>''))

 document document..writewrite(('</div>''</div>'))

}}

Netscape didn't have divs, it had LAYERs. This is basically the same thing

with a different name, because browser creators at the time liked causing

pain.

(Side note, this is why some people used to refer to divs as "div layers"

– it encompasses both elements.)

<<LAYERLAYER NAMENAME==""a0a0""

 LEFTLEFT==1010 TOPTOP==1010

 VISIBILITYVISIBILITY==SHOWSHOW

 BGCOLORBGCOLOR==""#FFFF00#FFFF00""

 CLIPCLIP==""0,0,3,30,0,3,3"">>

</</LAYERLAYER>>

}}

If document.layers returned something, we knew we were in

Netscape, and could do Netscape things. In this case:

ifif ((documentdocument..layerslayers)) {{

 window window..captureEventscaptureEvents((EventEvent..MOUSEMOVEMOUSEMOVE));;

}}

The full script is available at DynamicDrive.com.

Now: Canvas and requestAnimationFrame

https://developer.mozilla.org/en-US/docs/Web/API/Document/write
http://www.dynamicdrive.com/dynamicindex13/star.htm

Tim Holman has done the hard work for us here, and recreated 90s-

style cursor effects with modern JavaScript and HTML.

Tim's cursors use canvas, which is much more performant than rendering

individual elements into the DOM. You also get much more fine-grained
control over how elements are positioned. Can you imagine trying to

render this many stars into the DOM in the old script? Using the canvas

API and requestAnimationFrame – the function that allows us to batch

up animations and efficiently update them before the browser's next
repaint – we can render lots of little stars, making them fade in and out in

lovely ways.

Media queries work in JavaScript, too!

Of course, cursor trails mean animations, and not everyone wants to see

those. The good news is, we can use media queries in JS, just like we do

in CSS and HTML <source> tags.

constconst prefersReducedMotionQuery prefersReducedMotionQuery ==

windowwindow..matchMediamatchMedia(('prefers-reduced-motion''prefers-reduced-motion'))

ifif ((!!prefersReducedMotionQueryprefersReducedMotionQuery..matchesmatches)) {{

cursorcursor..initinit(())

}}

By calling window.matchMedia with the name of the query we're

interested in (prefers-reduced-motion), we can check the value of

0:00 / 0:05

https://tholman.com/cursor-effects
https://developer.mozilla.org/en-US/docs/Web/API/Canvas_API
https://developer.mozilla.org/en-US/docs/Web/API/window/requestAnimationFrame

the user's motion settings and only init the cursor if they don't have

reduced motion enabled.

You can even add an event listener to the media query, so that when its

value changes we can dynamically initialise or destroy the cursor

accordingly.

prefersReducedMotionQueryprefersReducedMotionQuery..addEventListeneraddEventListener(('change''change',, (())

ifif ((prefersReducedMotionQueryprefersReducedMotionQuery..matchesmatches)) {{

cursorcursor..destroydestroy(())

}} elseelse {{

cursorcursor..initinit(())

}}

}}))

Webrings

In the days before search engines were particularly good, how did you

find similar websites? Webrings, of course. A webring is a collection of

websites based around a shared interest or topic. Webrings offered a
sense of belonging to a community, and gave you a fancy plaque to put

on your website.

Each site in the webring would have a plaque like this so you could

navigate the ring, and there'd be a backend somewhere (probably
written in Perl) that did all the hard work of calculating which site came

where in the ring.

I built my own webring for State of the Browser 2022 attendees, with

a Google Sheets backend (for time-saving/live demo reasons) and a

Cloudflare Worker on top of that to work out which site to send people

https://sotb22-webring.neocities.org/

to. It checks the value of request.referrer to see where the call is

coming from, looks up that URL in the list of sites, and returns the next or
previous one accordingly.

asyncasync functionfunction handleRequesthandleRequest((requestrequest)) {{

 constconst {{ pathname pathname }} == newnew URLURL((requestrequest..urlurl))

 constconst data data == awaitawait fetchAndParseCsvfetchAndParseCsv(())

 constconst referrer referrer == request request..referrerreferrer

[[......]]

For something a little more permanent/professional, I recommend
checking out Max Böck's webring kit.

Guestbooks

Last but not least, the humble guestbook! In the days before social
media, this was how we showed our appreciation for webmasters. Rather

than just building a guestbook I thought I'd do something a little different

for the talk. It's a guestbook all right, but it's powered by Twitter!

View the guestbook

Instead, I used a technology called webmentions: a protocol to notify a

website when someone else links to them, such as on their own website

or on Twitter. Webmentions are collected as a feed (a bit like RSS) and
associated with a domain name or host. I put meta tags in the head of my

site to indicate that I'm on the lookout for webmentions.

https://mxb.dev/blog/webring-kit/
https://sophie-sotb22.neocities.org/guestbook

© Sophie Koonin 2022

rss twitter mastodon email

I use webmention.io to collect those webmentions for me, though it's

totally possible to set up your own server to do so. On this website
(localghost) I collect webmentions at build time and publish them

underneath the pages, but on the demo website for this talk I have a

client-side script to fetch mentions as I wanted to be able to demo them

live.

I use brid.gy to collect mentions from Twitter and send them to

webmention.io, and then my site queries webmention.io to get the feed

of mentions.

Go forth and build weird stuff!

The web is an amazing platform brimming with opportunities to be

creative and experimental. I'd love to see what you build – if you mention
this page on your own site or Twitter, the webmentions will appear

below, or tag me @type__error!

Webmentions

No mentions yet.

https://localghost.dev/feed.xml
https://twitter.com/type__error
https://social.lol/@sophie
mailto:sophie@localghost.dev
https://webmention.io/
https://brid.gy/
http://webmention.io/
http://webmention.io/

