
Dev Environments

Why �nd how you should be composin�

with Docker Compose
Alec Fong

August 10, 2022 · 7 read

How to manage multi-service, multi-environment dev environments/applications - with

Docker Compose

If you’re building an application with server-side logic you probably have run into the

challenge of replicating your services in a local and isolated manner. The application

may need a database, cache, worker, and/or other services. There are several ways

to address this problem, but in this article, we will be looking at using Docker

Compose to manage a multi-service, multi-environment application.

Docker compose is a tool designed to help manage your docker containers through

configuration instead of through CLI commands. Docker Compose simplifies managing

multiple services, networking, and logging. Due to Docker Compose’s relative simplicity

and lightweight, it can be a useful dev playground even when using other container

orchestration tools like Kubernetes or Nomad and especially useful if using container

cloud solutions like Google Cloud Run, AWS ECS, or Azure Containers.

One of Docker Compose’s most powerful features is also one of its most under-

leveraged: config composability. Docker Compose merges multiple config files

together allowing you to easily separate concerns, and create multiple different

environments all while not repeating yourself.

Managing multiple environments can be a bit tricky. Let’s take a look at an example;

we are developing two services:

Blog LoginFor AI & ML

https://twitter.com/The__Fong
https://brev.dev/blog

API server

background job worker

These services depend on two third-party dependencies:

mysql database

redis cache

A standard way to write your docker-compose file might be like this.

TL;DR

Check out the complete source code

docker-compose.yml

version: '3.9'

services:

 server:

 build:

 context: .

 ports:

 - '8000:8000'

 worker:

 build:

 context: .

 database:

 image: mysql

 ports:

 - '3306:3306'

 cache:

 image: redis

 ports:

 - '6379:6379'

$ docker-compose -f docker-compose.yml up

https://github.com/brevdev/multi-stage-docker-example/tree/main/python-app

This configuration is a great start! The server and worker gets built and run with

access to the helper services: database and cache. This can satisfy simple application

setups, but now let's add another variable to our application development.

What if we have multiple ways to build and run our services? What if we wanted to

simulate “prod”, “staging”, or “dev"? There are several ways this can be achieved

depending on how the environments differ. The naive solution might be to have

separate docker-compose files for each environment. This works just fine but may

become tedious if there are lots of similarities and many services to manage. Changing

one file may mean you need to change all— this can quickly become tedious to

maintain.

Our solution leverages Docker Compose’s composability! Imagine our server and

worker have different images, environment variables, and start commands for “dev”

and “prod”. Let’s create a base file and then apply our environment-specific changes

to the base.

base.yml

version: '3.9'

services:

 server:

 build:

 context: .

 ports:

 - '8000:8000'

 worker:

 build:

 context: .

 database:

 image: mysql

 ports:

 - '3306:3306'

 cache:

 image: redis

 ports:

 - '6379:6379'

Our base.yml file specifies the configuration default and shared values.

dev.yml

version: "3.9"

services:

 server:

 build:

target: dev

env_file: [dev.env]

 worker:

 build:

target: dev

env_file: [dev.env]

The dev.yml specifies dev-specific configuration.

prod.yml

version: "3.9"

services:

 server:

 build:

target: prod

env_file: [dev.env]

 worker:

 build:

target: prod

env_file: [prod.env]

The prod.yml specifies prod-specific configuration.

To run the dev environment specify both the base and dev file:

$ docker-compose -f base.yml -f dev.yml up

To run the prod environment specify both the base and prod file:

$ docker-compose -f base.yml -f prod.yml up

To debug how the files are merged together run:

Blog Pricing Jobs

Intensely non-remote in San Francisco🤙

© 2022 Brev.dev, Inc. All rights reserved.

$ docker-compose -f base.yml -f {env}.yml config

Using Docker Compose with multiple files is a powerful way to maintainably and

extensibly manage services. To learn more check out Docker’s official

documentation.

If working on developer experience problems like these interest you, check out

brev.dev

Previous

� Don't let a bad abstraction cost

you 2 years

Next

Harness Multi-stage builds to create

optimal images→

https://twitter.com/brevdev
https://github.com/brevdev/brev-cli
https://www.linkedin.com/company/brevdev/
https://brev.dev/blog
https://brev.dev/pricing
https://brev.notion.site/Brev-dev-is-Hiring-3c0f9c2d93fe4c4897deaa9fa0380f36
https://docs.docker.com/compose/extends/#multiple-compose-files
http://brev.dev/
https://brev.dev/blog/dont-let-a-bad-abstraction-cost-you-2-years
https://brev.dev/blog/harness-multi-stage-builds-to-create-optimal-images

