
Dev Environments

Sne�kin� into �n Uber p�rkin� lot to �et
your Development Environment up �nd
runnin�

Nader Khalil

May 11, 2022 · 5 read

Paneau �YC W20� to Brev.dev: Why Configuring development environments were a

painful challenge.

We got into YCombinator for Paneau: an advertising platform for local businesses.

We spoke with bar owners who complained digital ads felt like snake oil: they had

thousands of clicks yet empty bars. We wanted to build a digital ad that actually

brought people into the business.

So we put tablets in Ubers/Lyfts and let local businesses advertise only when the car

was nearby. The tablet had QR codes linked to your Uber/Lyft app to automatically

re-route your ride. Say you were going out with friends for drinks, once your Uber was

within walking distance of Teeth in the Mission neighborhood, you would see an ad

for “Buy 1 Get 1 Free Margaritas”. If you re-routed your Uber/Lyft, the business owner

knows his ad worked, you got a free drink, and the driver got a tip. Everyone won!

Blog LoginFor AI & ML

https://twitter.com/naderlikeladder
https://brev.dev/blog

Launching a startup is hard, and launching one with physical operations is even harder.

There’s just so much surface area for things to break, and unlike scaling a server,

things cost money before you have users. We onboarded all the drivers from my living

room, so they knew my address and sometimes knocked on our door at am

because the tablet didn’t turn on. At the time, it was exhilarating to have something

working, but I do enjoy sleeping at night now.

Finding drivers was the trickiest part of the business until we discovered the most

valuable ride for drivers was the airport! Drivers would literally wait outside the airport

for the �5x fare. As a result, Uber and Lyft both made parking lots about a half-mile

from SFO for drivers to wait, FIFO, for the valuable rides. This was a jackpot. I parked

outside of the lot and tried to walk in, only to be stopped immediately by security. I

find myself back in the car frustrated, like a kid in a candy store without an allowance.

I can see 00� drivers. Meanwhile, we only have 10 signed up. I went to a nearby gas

station and bought my first pack of cigarettes. I’m Lebanese, and given the

stereotype of Arab drivers, I thought if I lit up a cigarette and walked onto the lot,

security wouldn’t bat an eye. And…it worked!! We had 00 drivers on the waitlist that

night ��0x!!!�. When we really started to scale during YC, their security caught on.

Forced to adapt once again, we ditched the cigarette-stroll-in approach. It was likely

bizarre being the only person walking onto a parking lot, so we gave the much easier

approach of driving directly into the parking lot a try, and ta-dah, we were back in

action. Now able to bring a trunk full of tablets with us to the driver lot, we began

onboarding drivers on the spot, which was exponentially more efficient for drivers and

us.

�Extremely supportive girlfriend getting tablets ready for me in the living room while I’d

onboard drivers in the street ❤)

�Happy Driver)

�Another Happy Driver :))

Hardware costs can be lethal. With software, our AWS bill goes up when we get users.

With hardware, you have heavy costs regardless. Initially, we launched by having

drivers use their hotspot for data which was miserable. If they took a smoke break or

filled up gas, the hotspot would disconnect, we wouldn’t get their driving metrics, they

wouldn’t get paid, and they ’d churn. We needed SIM cards, but at this point, we

hadn’t gotten into YC yet and were bootstrapping. We called AT&T and got a quote.

We called Verizon to beat it, then called T�Mobile to beat Verizon’s, then called Sprint

to beat Verizon’s. Finally, we circled back to AT&T and they offered free devices if we

paid $10/mo for data. PHEW.

Financials were looking fine, and we had $25K in the bank (so we thought). I wake up

on a Saturday in June 201 to a suspicious email, check our bank balance, and lo and

behold we’re at �$200. In a total crapshoot, I called Fidelity and told the service rep

to drain my 01K so we can keep the business going. The service rep mentioned this

was a lousy retirement decision. Retirement?? I couldn’t see further than three weeks

in the future. This was a great startup lesson: people don’t pay invoices on time. We

went negative because we had $20K in unpaid invoices. My 01K kept us going, we

chased after the unpaid invoices, then GOT INTO YC. That $150K coming into the

bank was such a sigh of relief.

We always found a solution for physical things, and I wouldn’t even say it slowed us

down. Whether it was using a stereotype to my advantage, purging my 01k to buy

two more months of runway, or hot-swapping tablets for drivers on their trips, we

always figured it out. The only time I felt truly defeated was when something with our

development got messed up. I’m not originally a business guy! I was enamored by

development at 1, to the point that the local university had me recruiting new

freshmen into Computer Engineering, the field I would eventually graduate with a major

in 8 years later.

�1 yo Nader getting new freshmen excited about robotics)

When we first had to deploy Paneau in March 2018, it took the entire month. This

was my first experience deploying, and I was so frustrated, because “it worked

locally”. I could launch ads onto my tablet when running on localhost, why could I not

send my folder to AWS, and have it just work? Frustrated, I wrote this in my notes:

Even after that, it was never a “one and done”. Experts reading this are probably

laughing at my naivete. When we were scaling, we spent an entire month finding a bug

making the advertiser’s app infuriatingly slow. We couldn’t replicate it locally, so we had

to push changes blindly, sit back, and hope. This, too, seemed like a solved issue! I

worked at Workday prior to Paneau, building a cloud-based dev environment for the

internal app developers. It standardized the dev environments so they ’re just like prod

environments which dramatically reduced the amount of time developers spend

solving self-inflicted bugs. Similar to Replit and Codespaces, this solution had

developers code in a web app or get locked into a certain set of tools.

So Paneau was doing extremely well, growing advertisers and drivers by some 0%

monthly, until the pandemic sent it crashing down. It was March 2020. We were the

last physical YC batch. Our YC partners had a call with us where they said “Demo Day

is no longer in 2 weeks. It’s in days. There’s no pitching, we’re just sending your

decks to investors. You’ll never raise again the world is ending. Grab as much money

as you can.” We went from a fleet of 00 to 7 that week. We didn’t raise a dime.

The world really felt like it was ending, or as some put it at the time, “nature is healing”.

We called our tablet distributors and data plans to pause everything since we didn’t bill

any customers for March, and our $20K ARR turned to $0 overnight. Unfortunately,

the service reps had been furloughed because the world was ending, so nothing could

be paused. My co-founder and I left our SF apartment and moved into my parent’s

garage in San Diego (thanks mom + extremely patient significant others) and worked

on pivots until we realized the company was going to bleed dry. �Side note: want to

carry on the baton? Get in touch. I’ll give you our code and tell you what to avoid —

but heads up, this journey isn’t for the faint of heart!�

We sit in this garage and we thought. The world was in a dire place. Even the beaches

in San Diego had locked down (if you’re not from SD, this was a huge deal). Life’s too

short to build just anything, so if we could build whatever we wanted, what would it

be? We kept coming back to our pain points in the years prior, and what we would

have given to not get stuck solving machine problems having nothing to do with the

domain/product of what we were building.

A lot of venture dollars and founder energy are focused on tools that make deploying

code easier. There wasn’t nearly as much attention given to how painful developer

environments could be, with most advice being to learn Docker and forcing a tool

meant for deploying production code to also be used for developer environments. But

this is a poor developer experience. We wanted something lightweight that allowed

you to forget anything other than the programming task at hand - where a naive

approach to development is anything but. Remember when we thought that

‘development mostly involves sitting in front of a text editor and compiler

programming’, rather than endless dashboards, tooling, and distractions masquerading

as abstractions. When we didn’t need to know everything to do anything.

Brev.dev provides local-first developer environments so you can keep using the tools

you love on your machine, instantly onboard new engineers, and rid yourself of

installation README’s and painful software updates forever.

Blog Pricing Jobs

Intensely non-remote in San Francisco🤙

© 2022 Brev.dev, Inc. All rights reserved.

We should know - we exclusively use Brev for our own development, and we think it’s

pretty great - we would love for you to check it out.

Previous

� Harness Multi-stage builds to create optimal

images

Next

Free your mac from docker

→

https://twitter.com/brevdev
https://github.com/brevdev/brev-cli
https://www.linkedin.com/company/brevdev/
https://brev.dev/blog
https://brev.dev/pricing
https://brev.notion.site/Brev-dev-is-Hiring-3c0f9c2d93fe4c4897deaa9fa0380f36
https://brev.dev/blog/harness-multi-stage-builds-to-create-optimal-images
https://brev.dev/blog/free-your-mac-from-docker

