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We made significant improvements to the throughput of wireguard-go, which is the

userspace WireGuard® implementation that Tailscale uses. What this means for you:

improved performance of the Tailscale client on Linux. We intend to upstream these

changes to WireGuard as well.

You can experience these improvements in the current unstable Tailscale client release,

and also in Tailscale v1.36, available in early 2023. Read on to learn how we did it, or

jump down to the Results section if you just want numbers.

Background
The Tailscale client leverages wireguard-go, a userspace WireGuard implementation

written in Go, for dataplane functionality. In Tailscale, wireguard-go receives

unencrypted packets from the kernel, encrypts them, and sends them over a UDP

socket to another WireGuard peer. The inverse flow is flipped — when receiving

communications from a peer, wireguard-go first reads encrypted packets from a UDP

socket, then decrypts them, and writes them back to the kernel. This is a simplified view

of the pipeline inside of wireguard-go — the Tailscale client adds additional functionality,

such as NAT traversal, access control, and key distribution.

Baseline
Network performance is a complicated topic in large part because networked

applications can have drastically different requirements and goals. In this post, we will

focus on throughput. By throughput, we mean the amount of data that can be

transferred between Tailscale clients within a given timeframe.

https://tailscale.com/
https://twitter.com/jordanwhited
https://twitter.com/raggi
https://git.zx2c4.com/wireguard-go/about/
https://www.wireguard.com/
https://github.com/WireGuard/wireguard-go/pull/64
https://pkgs.tailscale.com/unstable/
https://tailscale.com/blog/how-tailscale-works/


Disclaimer about benchmarks: This post contains benchmarks! These benchmarks are

reproducible at the time of writing, and we provide details about the environments we

ran them in. Benchmark results tend to vary across environments, and they also tend to

go stale as time progresses. Your mileage may vary.

We’ll start with some baseline numbers for wireguard-go and in-kernel WireGuard.

Toward the end we will show results of our changes. Throughput tests are conducted

using iperf3 over a single TCP stream, with cubic-flavored congestion control. Ubuntu

22.04 is the operating system on all hosts.

For these baseline tests, we’ll use two c6i.8xlarge virtual hosts in AWS. These instances

have fast network interfaces and sufficient CPU capacity to handle encryption at

network speeds. They are in the same region and availability zone:

ubuntu@thru6:~$ ec2metadata | grep -E 'instance-type:|availability-zone:'

availability-zone: us-west-2d

instance-type: c6i.8xlarge

ubuntu@thru7:~$ ec2metadata | grep -E 'instance-type:|availability-zone:'

availability-zone: us-west-2d

instance-type: c6i.8xlarge

ubuntu@thru6:~$ ping 172.31.56.191 -c 5 -q

PING 172.31.56.191 (172.31.56.191) 56(84) bytes of data.

--- 172.31.56.191 ping statistics ---

5 packets transmitted, 5 received, 0% packet loss, time 4099ms

rtt min/avg/max/mdev = 0.098/0.119/0.150/0.017 ms

This first benchmark does not use wireguard-go. It sets a throughput baseline without

any WireGuard overhead:

ubuntu@thru6:~$ iperf3 -i 0 -c 172.31.56.191 -t 10 -C cubic -V

iperf 3.9

Linux thru6 5.15.0-1026-aws #30-Ubuntu SMP Wed Nov 23 14:15:21 UTC 2022 x86_64

Control connection MSS 8949

Time: Thu, 08 Dec 2022 19:29:39 GMT

Connecting to host 172.31.56.191, port 5201

      Cookie: dcnjnuzjeobo4dne6djnj3waeq4dugc2fh7a

      TCP MSS: 8949 (default)

[  5] local 172.31.51.101 port 40158 connected to 172.31.56.191 port 5201

Starting Test: protocol: TCP, 1 streams, 131072 byte blocks, omitting 0 seconds,

[ ID] Interval           Transfer     Bitrate         Retr  Cwnd

[  5]   0.00-10.00  sec  11.1 GBytes  9.53 Gbits/sec    0   1.29 MBytes

- - - - - - - - - - - - - - - - - - - - - - - - -

Test Complete. Summary Results:

[ ID] Interval           Transfer     Bitrate         Retr

[  5]   0.00-10.00  sec  11.1 GBytes  9.53 Gbits/sec    0             sender

[  5]   0.00-10.04  sec  11.1 GBytes  9.49 Gbits/sec                  receiver

CPU Utilization: local/sender 10.0% (0.2%u/9.7%s), remote/receiver 4.4% (0.3%u/4

snd_tcp_congestion cubic

rcv_tcp_congestion cubic

This second benchmark uses in-kernel WireGuard:

ubuntu@thru6:~$ iperf3 -i 0 -c thru7-wg -t 10 -C cubic -V

iperf 3.9

https://github.com/esnet/iperf


Linux thru6 5.15.0-1026-aws #30-Ubuntu SMP Wed Nov 23 14:15:21 UTC 2022 x86_64

Control connection MSS 1368

Time: Thu, 08 Dec 2022 19:58:24 GMT

Connecting to host thru7-wg, port 5201

      Cookie: o5iu6xoxq47swoubx5un32monokel573kj6i

      TCP MSS: 1368 (default)

[  5] local 10.9.9.6 port 46284 connected to 10.9.9.7 port 5201

Starting Test: protocol: TCP, 1 streams, 131072 byte blocks, omitting 0 seconds,

[ ID] Interval           Transfer     Bitrate         Retr  Cwnd

[  5]   0.00-10.00  sec  3.09 GBytes  2.66 Gbits/sec   81    987 KBytes

- - - - - - - - - - - - - - - - - - - - - - - - -

Test Complete. Summary Results:

[ ID] Interval           Transfer     Bitrate         Retr

[  5]   0.00-10.00  sec  3.09 GBytes  2.66 Gbits/sec   81             sender

[  5]   0.00-10.05  sec  3.09 GBytes  2.64 Gbits/sec                  receiver

CPU Utilization: local/sender 5.2% (0.2%u/5.0%s), remote/receiver 5.9% (0.1%u/5.

snd_tcp_congestion cubic

rcv_tcp_congestion cubic

Now, over wireguard-go@bb719d3:

ubuntu@thru6:~$ iperf3 -i 0 -c thru7-wg -t 10 -C cubic -V

iperf 3.9

Linux thru6 5.15.0-1026-aws #30-Ubuntu SMP Wed Nov 23 14:15:21 UTC 2022 x86_64

Control connection MSS 1368

Time: Thu, 08 Dec 2022 19:30:49 GMT

Connecting to host thru7-wg, port 5201

      Cookie: zg7hsb2jrbklpaqez2gzhdi2kyxr4ibne5lf

      TCP MSS: 1368 (default)

[  5] local 10.9.9.6 port 51660 connected to 10.9.9.7 port 5201

Starting Test: protocol: TCP, 1 streams, 131072 byte blocks, omitting 0 seconds,

[ ID] Interval           Transfer     Bitrate         Retr  Cwnd

[  5]   0.00-10.00  sec  2.82 GBytes  2.42 Gbits/sec  4711    415 KBytes

- - - - - - - - - - - - - - - - - - - - - - - - -

Test Complete. Summary Results:

[ ID] Interval           Transfer     Bitrate         Retr

[  5]   0.00-10.00  sec  2.82 GBytes  2.42 Gbits/sec  4711             sender

[  5]   0.00-10.04  sec  2.82 GBytes  2.41 Gbits/sec                  receiver

CPU Utilization: local/sender 5.7% (0.2%u/5.5%s), remote/receiver 7.3% (0.6%u/6.

snd_tcp_congestion cubic

rcv_tcp_congestion cubic

One thing that’s interesting to note: The TCP MSS is much higher on the first test (more

on MSS/MTU later if you are unfamiliar). AWS supports a 9001 byte IP MTU. What

happens when we increase the MTU on the wireguard-go interface?

ubuntu@thru6:~$ iperf3 -i 0 -c thru7-wg -t 10 -C cubic -V

iperf 3.9

Linux thru6 5.15.0-1026-aws #30-Ubuntu SMP Wed Nov 23 14:15:21 UTC 2022 x86_64

Control connection MSS 8869

Time: Thu, 08 Dec 2022 19:33:21 GMT

Connecting to host thru7-wg, port 5201

      Cookie: ov4nsnsdfxomict4cu2cxy2iwt4ncpi364d4

      TCP MSS: 8869 (default)

[  5] local 10.9.9.6 port 43416 connected to 10.9.9.7 port 5201

Starting Test: protocol: TCP, 1 streams, 131072 byte blocks, omitting 0 seconds,

[ ID] Interval           Transfer     Bitrate         Retr  Cwnd

[  5]   0.00-10.00  sec  9.17 GBytes  7.88 Gbits/sec  1854   1.54 MBytes

- - - - - - - - - - - - - - - - - - - - - - - - -

https://git.zx2c4.com/wireguard-go/tree/?id=bb719d3a6e2cd20ec00f26d65c0073c1dde6b529


Test Complete. Summary Results:

[ ID] Interval           Transfer     Bitrate         Retr

[  5]   0.00-10.00  sec  9.17 GBytes  7.88 Gbits/sec  1854             sender

[  5]   0.00-10.04  sec  9.17 GBytes  7.84 Gbits/sec                  receiver

CPU Utilization: local/sender 14.6% (0.2%u/14.4%s), remote/receiver 26.6% (1.4%u

snd_tcp_congestion cubic

rcv_tcp_congestion cubic

Interesting! More than a 3x improvement in throughput. This suggests that per-packet

overhead is quite high. Let’s grab some Linux perf data to confirm.

Linux perf and flame graphs

We can analyze performance using Linux perf to better understand where CPU time is

spent. Flame graphs can be rendered from the perf data, and they help us visualize the

stack traces. The wider the function, the more expensive it (and/or its children) are. The

flame graphs below are interactive. You can click to zoom and hover to see

percentages. The first flame graph is from the sender:

Sender

Hover rows for details.

A large portion of CPU time (unrelated to crypto) on the sender is spent in:

https://perf.wiki.kernel.org/index.php/Main_Page
https://www.brendangregg.com/flamegraphs.html
https://github.com/spiermar/d3-flame-graph


Now, for the receiver:

Receiver

Hover rows for details.

A large portion of CPU time (unrelated to crypto) on the receiver is spent in:

sendmsg()  on the UDP socket1

write()  towards the TUN driver2

read()  from the TUN driver3

write()  towards the TUN driver1

recvmsg()  on the UDP socket2

sendmsg()  on the UDP socket3



This confirms that per-packet overhead is high. By increasing the MTU of the TUN

interface, we reduced the frequency of the system calls for I/O on the TUN and UDP

socket. Since those dominate these profiles, it makes sense that throughput would

increase as a result. So how do we reduce the frequency of these system calls while still

maintaining an MTU that will work across the general internet?

TCP Segmentation

TCP enables transmission of an arbitrary stream of bytes between two sockets. A

userspace application interacts with a TCP socket using write() - and read() -like

kernel interfaces once it is in a connected state. The application may write()  2 bytes,

followed later by a 2,000 byte write() . The applications on either end do not need to

be involved in the retransmission, ordering, or framing of messages between them.

These are all handled by the TCP implementation on the kernel side of the system calls.

While the application writes arbitrary-sized data per system call, the TCP implementation

must segment the data before it gets sent over the network. There is a finite limit to the

size of a TCP segment, called the maximum segment size (MSS). MSS is advertised

during the TCP three-way handshake. The lowest value wins, and neither side will

transmit a segment exceeding it. MSS is typically derived from the maximum transmission

unit (MTU) of the egress network interface. The MTU represents the maximum size of a

single packet at the network layer. MSS describes the segment size limit at a higher

layer protocol (TCP) than MTU (typically IP), and should always be less than it as a

result.

There are consequences when a packet exceeds the MTU of a network path. The

network device enforcing the limit may choose to fragment the packet into multiple

smaller packets, or just drop the oversized packet. Both of these outcomes have

negative impacts on performance. There are also mechanisms for signaling to the

endpoints that their frames are too large, which we will not go into here. In summary,



there is a finite packet size for packet-switched networks, and TCP implementations try

to respect it.

Knowing that TCP is responsible for segmenting the data, we can picture the journey of

packets through the host to look roughly something like this:

There is a nonzero cost for each of these layers to handle an individual TCP segment. If

we can reduce the number of traversals through this stack, we can win back a lot of CPU

time and pipeline latency. Enter TCP segmentation offload (TSO).

TCP Segmentation Offload (TSO)

TSO is an offloading technique where the final fit-within-MSS segmentation is performed

by the network interface device. This enables up to 64KB sized segments to traverse

the stack, while still fitting within MSS before entering the network. Recent work in the

Linux kernel extends the 64KB limit to 256KB. TSO requires extra metadata to be

passed along with the oversized segment describing the size to segment to, along with

where to find the TCP checksum field. The TCP checksum must be recomputed post-

segmentation as the payload is shortened, and various TCP header fields will differ

between segments.

With a typical MTU of 1500 bytes and IPv4 TCP MSS of 1460 bytes, TSO could be used

to reduce stack traversals by up to 44x.

Note: Modern Linux makes use of generic segmentation offload (GSO). This enables the

networking stack to postpone segmentation as late as possible, even if the driver and

device do not support TSO.

But, what about the other direction?

Generic receive offload (GRO) is the inverse of TSO. The network interface device

coalesces packets together that belong to the same TCP stream, following a set of rules

to prevent breaking the TCP implementation.

https://lwn.net/Articles/883713/


(Discovery of) TSO and GRO in the TUN driver

The Linux kernel contains a network device driver referred to as TUN/TAP. This driver is

used in wireguard-go in order to present the application as a network device to the

kernel. That is, a packet sent out of the TUN interface is received by the userspace

application, and the userspace application can inject packets back toward the kernel by

writing in the other direction (received by the TUN interface).

When we set out to improve performance, we started by reading the TUN driver code.

We had initially hoped to use a multi-message API via a packet socket, but unfortunately

the kernel does not expose this to userspace. Instead, we started to explore the

set_offload() function. This function is responsible for controlling the offloads supported

by the TUN device, and we could enable TSO/GRO through it via ioctl() . This

functionality has been in the Linux kernel since v2.6.27 (2008), but seems to have gone

largely unnoticed outside of the kernel-side virtio framework uses that it was originally

added for.

With TSO/GRO enabled on the TUN, the application acting as the TUN device becomes

responsible for implementing the offload techniques (segmentation and coalescing).

Once we’ve segmented, where do we transmit the smaller segments? What represents

the “network” sitting on the other side of wireguard-go and tailscaled? The answer is “it

depends” in the Tailscale client, but typically it’s a UDP socket. After receiving packets

from the TUN device, wireguard-go handles encryption prior to transmission out of said

UDP socket. The same is true in reverse: We receive packets from a UDP socket, they

are decrypted, and then written back toward the TUN.

sendmmsg()  and recvmmsg()

The sendmmsg()  and recvmmsg()  system calls enable the transmission and reception of

multiple messages in a single system call. With a vector of packets now available from

reads at the TUN driver, we can leverage sendmmsg()  when transmitting out of the UDP

socket. The inverse direction starts with recvmmsg()  at the UDP socket, potentially

returning multiple packets, which are candidates for coalescing just before writing to the

TUN driver. Putting this together with TSO and GRO, we are able to reduce I/O system

calls on both ends of the pipeline.

https://docs.kernel.org/networking/tuntap.html
https://github.com/torvalds/linux/blob/f443e374ae131c168a065ea1748feac6b2e76613/drivers/net/tun.c#L3666
https://github.com/torvalds/linux/blob/f443e374ae131c168a065ea1748feac6b2e76613/drivers/net/tun.c#L2803
https://github.com/torvalds/linux/commit/f43798c27684ab925adde7d8acc34c78c6e50df8


Results
And now for the results!

Applying TCP segmentation offload, generic receive offload, and the mmsg() system

calls resulted in significant throughput performance improvements in wireguard-go, and

so also in the Tailscale client. Using the same tests we conducted previously, we

delivered a best case 2.2x improvement to wireguard-go. And, we improved the

throughput of Tailscale on Linux by up to 33%. We intend to continue working on

improving the performance of Tailscale in all areas, including throughput, as well as

across more platforms.

wireguard-go with TSO, GRO, and mmsg():

ubuntu@thru6:~$ iperf3 -i 0 -c thru7-wg -t 10 -C cubic -V

iperf 3.9

Linux thru6 5.15.0-1026-aws #30-Ubuntu SMP Wed Nov 23 14:15:21 UTC 2022 x86_64

Control connection MSS 1368

Time: Thu, 08 Dec 2022 19:39:43 GMT

Connecting to host thru7-wg, port 5201

      Cookie: y4x75uvr2uupa3urdguks6m5ovn2ucdrjxrs

      TCP MSS: 1368 (default)

[  5] local 10.9.9.6 port 58314 connected to 10.9.9.7 port 5201

Starting Test: protocol: TCP, 1 streams, 131072 byte blocks, omitting 0 seconds,

[ ID] Interval           Transfer     Bitrate         Retr  Cwnd

[  5]   0.00-10.00  sec  6.24 GBytes  5.36 Gbits/sec    0   3.02 MBytes

- - - - - - - - - - - - - - - - - - - - - - - - -

Test Complete. Summary Results:

[ ID] Interval           Transfer     Bitrate         Retr

[  5]   0.00-10.00  sec  6.24 GBytes  5.36 Gbits/sec    0             sender

[  5]   0.00-10.04  sec  6.24 GBytes  5.33 Gbits/sec                  receiver

CPU Utilization: local/sender 9.1% (0.1%u/9.0%s), remote/receiver 0.5% (0.0%u/0.

snd_tcp_congestion cubic

rcv_tcp_congestion cubic



Surprisingly, we improved the performance of wireguard-go (running in userspace)

enough to make it faster than WireGuard (running in the kernel) in the best conditions.

But, this point of comparison likely won’t be long-lived: we expect the kernel can do

similar things.

Conclusions
In our journey to overcome our biggest overhead in packet processing, we came very

close to wanting a new or different kernel interface. We gladly found that one was

already available in the Linux kernel — and one that has been around long enough for us

to use everywhere. Performance can always become somewhat of an arms race, but our

results here demonstrate that we can keep up with our kernel counterparts provided

that we are using the right kind of kernel interface – userspace isn’t slow, some kernel

interfaces are!

Thanks to Adrian Dewhurst for his detailed review and thanks to Jason A. Donenfeld for

his ongoing review of our patches. Thanks to our designers Danny Pagano for the

illustrations, and Ross Zurowski for incorporating d3-flame-graph.

To learn more, watch our discussion with Jordan Whited and James Tucker on improving

Tailscale’s throughput.
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