
Xe - Blog - Contact - Resume - Talks - Signal Boost - Feeds | Graphviz - When Then Zen

<Cadey> Hello! Thank you for visiting my website. You seem to be using an ad-blocker. I understand why

you do this, but I'd really appreciate if it you would turn it off for my website. These ads help pay

for running the website and are done by Ethical Ads. I do not receive detailed analytics on the ads and

from what I understand neither does Ethical Ads. If you don't want to disable your ad blocker, please

consider donating on Patreon or sending some extra cash to `xeiaso.eth` or

`0xeA223Ca8968Ca59e0Bc79Ba331c2F6f636A3fB82`. It helps fund the website's hosting bills and pay for the

expensive technical editor that I use for my longer articles. Thanks and be well!

My Blog is Hilariously Overengineered to the Point People Think it's a Static Site

<Cadey> So you are aware: you are reading the written version of a conference talk. This is written in

a different style that is more lighthearted, conversational and different than the content normally on

this blog. The words being said are the verbatim words that were spoken at the conference. The slides

are the literal slides for each spoken utterance. If you want to hide the non-essential slides, please

install this userstyle: `No fun allowed`. If this isn't enough, please edit it to also hide this CSS

class: `xeblog-slides-essential`. Doing this may make the presentation page harder to understand.

YouTube link (please let me know if the iframe doesn't work for you)

My Blog is Hilariously Overengineered to the Point People Think it's a Static Site

==

YouTube video for the talk

0:00

Transcript

https://xeiaso.net/
https://xeiaso.net/blog
https://xeiaso.net/contact
https://xeiaso.net/resume
https://xeiaso.net/talks
https://xeiaso.net/signalboost
https://xeiaso.net/feeds
https://graphviz.christine.website/
https://when-then-zen.christine.website/
https://www.ethicalads.io/
https://patreon.com/cadey
https://xeiaso.net/css/no-fun-allowed.user.css
https://youtu.be/-XX72twf7ZU
https://xeiaso.net/contact

Speed. Safety. Development experience. Fearless concurrency. These are all things that you associate with

programs written in Rust. How about some more buzzwords? Words like elegant? That's a good one.

I'm Xe Iaso and I'm going to share the gory details on how my blog works, and why people often mistake it for a

static website. Buckle up and kick back, we're going to learn about the internet today.

I'm Xe Iaso. You've probably seen my blog on that orange website or that other orange website. I also study

philosophy and have been writing a novel. I work at Tailscale as the Archmage of Infrastructure and I do

developer relations and my blog is somehow one of the best resources for learning Nix and NixOS.

This talk will contain opinions about website design and the like. These opinions are my own and are not the

opinions of my employer.

Websites are social constructs. There are only servers that speak this weird HTTP protocol and sometimes spit out

a markup language called HTML if you're lucky. This HTML is then understood by either very principled humans or

"web browsers" and then it all gets transformed into roughly what the writer or designer wants it to look like.

I write all my posts for the blog in markdown in emacs. Sometimes I do brain dumping or initial drafting in Apple

Notes on my MacBook, iPad, or even phone rarely but it all gets into emacs eventually for publication.

This markdown has some front matter in YAML. This has metadata like tags, the "series" it is in, stream

recordings related to posts, and when it is scheduled to be posted publicly. This is all used by the templates to

make sure I can't forget to put it in articles.

But, the main focus is on the contents of the post. The words I type out. In the process I've organically grown

my own custom markdown dialect on top of a markdown parser called comrak. Comrak is made by a friend and it is

the most important part of this website.

However, over the years I've found that vanilla markdown just isn't good enough for my needs. I've grown features

out on my blog that require more fancy things like the conversation snippets and the newly added AI generated

"hero images".

At first I just implemented a hacky markdown extension. It applied the conversation snippet logic to anything

that matches a markdown link with a weird URL scheme. Unfortunately, that ended up not scaling well as the

conversation snippets got more complicated, like when I need to add links.

https://docs.rs/comrak/latest/comrak/

So I brought in a library called `lol_html`. I use this to transform my custom HTML elements into a bunch of

other HTML using a bank of templates. This allows me to write markdown with occasional HTML for the things

markdown can't express, then I can rely on my blog engine to translate those shortcodes to what people see on the

site.

In my blog I use a templating engine called ructe that takes a weird meta syntax on top of HTML and then spits

out Rust code.

https://docs.rs/lol_html/
https://docs.rs/ructe/latest/ructe

This means that when you load a page like my homepage, you're hitting a function that renders that home page to a

string buffer. That string buffer is what my website throws back into the void and hopefully it all comes back to

you on your end. As a side effect of doing all this, it happens fast. Really fast. So fast that it's faster than

a static website. Turns out serving things out of ram is very fast!

And when I say fast, I mean that I have tried so hard to find some static file server that could beat what my

site does. I tried really hard. I compared my site to Nginx, openresty, tengine, Apache, Go's standard library,

Warp in Rust, Axum in Rust, and finally a Go standard library HTTP server that had the site data compiled into

ram.

None of them were faster, save the precompiled Go binary (which was like 200 MB and not viable for my needs). It

was hilarious. I have accidentally created something so efficient that it's hard to really express how fast it

is.

https://github.com/Xe/site/blob/670a344225b201fcd5eac5c5b76e83bb197af970/src/handlers/blog.rs#L76-L110

...but the syntax of ructe is awful. I have to specify the types of my code in the template itself. I have to be

sure that the automatically generated template code is importing any of the non-default traits I need. It works,

but ehhhh it kinda sucks.

<Cadey> As a look into the kind of suffering it is, take a smell of this. This is what my templates

have to look like. ructe is great and all, but this is kind of annoying to deal with.

<!-- templates/definition.rs.html -->

@(term: String, definition: String)

<dt>@term</dt>

<dd>- @definitions</dt>

So I've been playing with Maud instead. Maud is a procedural macro library that lets you transform its own

domain-specific-language into HTML at compile time. You can make your components normal Rust functions. I use

Maud for all of my "shortcodes" and I've been slowly converting my site over to use it. It's pretty great. Highly

suggest you check it out.

https://github.com/Xe/site/blob/main/templates/talkpost.rs.html
https://maud.lambda.xyz/

<Cadey> Here's the same template in Maud. Much easier to read!

use maud::{html, Markup};

fn definition(term: String, definition: String) -> Markup {

 html!{

 dt {(term)}

 dd {

 "- "

 (definition)

 }

 }

}

One of the biggest things you see me use these for is the little "conversation snippets" that I have in my

blogposts. This was originally created to absolutely dunk on homophobes that were angry that someone put furry

art in an information security blogpost, but also lets me experiment with a more Socratic dialogue style for

helping to explain things in more detail. I now write everything with this style and have to go back and edit it

out for the work blog. My coworkers can confirm this.

This flexibility also lets me add things like "hero images" generated with AI. I use these to help make the posts

more visually interesting. I'm still refining my style with all of this and trying to make things better, but I

am absolutely terrible at CSS.

One of my favorite parts of how this site works is something that will probably make the theoretical computer

scientists in the crowd start crying. When my blog loads everything from the disk into ram, it stores all the

posts in the moral equivalent of a linked list. When you as a reader look at one of my posts, it's doing an O(n)

lookup on every one of my posts to figure out which post to display.

Normally this would be terrifying, especially with the amount of traffic my blog gets (as represented by this

handy graph here). You'd think that something that does a lookup on every post in the worst case for the most

common thing on the biggest dataset would make performance terrifyingly slow You'd also think that with the

amount of traffic I get that it'd be an active detriment.

However, this is when I play my trap card! When you look at the analytics you can see that the most frequently

read article is the most recently posted one! This means that it's not actually a big O of n lookup most of the

time. It's constant time complexity. In theory this design is the terrifying type of thing that you normally find

out about after you accepted a job offer, but in practice it's fine. It is a bit weird though, and I may need to

rethink this in the future, but this has scaled to almost 300 posts as-is so I think it's okay for now.

When my site starts up, it reads every post from the disk into ram. Rust makes that really easy. With tokio I can

schedule a bunch of jobs and then wait for them all to finish. This lets me spread the load out to every CPU core

so that the posts can load up to twelve times as fast as they would if everything was done iteratively. Once it's

done loading them, it sorts them and puts them into the list for the blog's data structures.

I can do this in one line of Rust and it would be something like 50 lines of Go. Rust allows me to have a *lower

cognitive complexity* because I can just rely on things to be taken care of for me instead of having to reinvent

the wheel all the time. I think in high level logic and let the compiler handle the details of making the

computer work. It's great.

This means that my website is actually stateless! This allows me to move it around to any server I want in case

something Very Bad happens.

I can also take all this data in ram and then transform it into whatever feed I want. I currently support RSS,

Atom and JSONFeed so that you can subscribe to my blog with whatever reader you normally use.

JSONFeed allows for custom extensions and I have played with one that gives you some of the extra metadata in my

front matter that isn't exposed in the JSONFeed structure itself. Normally this doesn't show much of anything

useful. It's where I put things like the Twitch and YouTube links associated with a post, the link to the slides

in talk pages or the name of the blogpost series if one exists.

I don't know if anyone uses these, but I've been starting to use them for some of my internal pipeline things.

This concept allows me to post things on my blog and then have something else take over to announce the posts on

Twitter and Mastodon with messages like this. Everything is automated. I don't have to lift a finger.

Except for Patreon. Patreon's API doesn't allow you to programmatically generate posts and sometimes I can forget

to link the post to my patrons. I'm trying to get better about this, but I would really love to just hand this

over to a machine and stop caring about it.

The other major thing I use this for is WebMentions. WebMentions are like at-mentions on Twitter but generalized

for any website on the internet. It's another IndieWeb protocol that a surprising number of websites support,

along with bridges for things like Twitter and Mastodon. Mi receives and stores all of the webmentions I get.

When my site starts up, it reaches out to mi and gets a list of webmentions for every post it loads into memory.

This means that there's potentially some delay from you sending the WebMention to it showing up on my blog, but

in practice it's okay. I'd like it to be faster, but that would mean having to move the WebMentions database into

my main blog app and I don't know if I'm ready to do that or not because it would make moving it around more

complicated.

So I've mentioned on my blog before that I host everything on one big NixOS server now. This means that I'd be

able to store things on that server fairly durably, but I also mention that my site is stateless and farms out

its state to a stateful microservice.

You may be wondering "why would you do that to yourself?". I have a good reason for it, but in order to explain

why I want to take a moment to trace over the history of my website's hosting.

Heroku's free tier was one of the things I used to break into tech. When I started my job in Mountain View and

got my former domain name I likely was using Heroku to host that website (I don't have notes from back then, I'm

going off gut feeling).

https://xeiaso.net/blog/rip-heroku

At that point my website was a showcase of my ability to write things using a web framework called Lapis, you can

think of it as Rails for Lua built into the side of nginx. This variant of my website was in use for a few years

until I rewrote it in late 2016.

<Mara> As an aside, something to keep in mind about how Heroku works is that it restarts every running

dyno (their term for container, remember that Heroku predates Docker by many years) every 24-28 hours.

When these restarts happen, any files you write to the disk get deleted and everything is set up from

scratch. This is why having Heroku lineage would make an application stateless by default.

A huge part of how that website worked was that it parsed the markdown for each post every time the page loaded.

This let me edit and test things very quickly, which made writing posts and previewing them in real time

possible. I didn't fix this before my first article got to the front page of Hacker News, which meant that my

website was a bit slow, but it did barely survive the load.

After that, I set up a cache server named OlegDB. OlegDB is a key value store written in C by some friends and it

is a joke about mayonnaise taken way too far. I used OlegDB in my website to cache the rendered HTML for each

markdown post. When you loaded a page it made another HTTP request to the OlegDB server to grab the contents from

the cache. This was faster than parsing the markdown each page load and ended up being the thing that made my

site survive the wrath of Hacker News.

Some time after my site was initially deployed on Heroku, I moved it over to a server running Dokku. Dokku is a

self-hostable Heroku clone that lets you run a Heroku-like environment with Docker on a server you own and

operate. I've used Dokku for years since and for a very long time it was the first thing I reached to when trying

to deploy anything to the cloud. It's got templates for spinning up basically any database you could think of at

the time and it was trivial to just spin up infra when I want to experiment and kill it off when I was done. No

additional cost required.

I was very price-sensitive back then. Being able to host many apps on the same $5/month server was a huge

advantage compared to hosting one app on one $5/month Heroku app.

I've been a member of the Go community slack since it was founded. Time and time again I had seen people wanting

an example of a web application that used the Go standard library as its framework and there was no really good

example for it. I had also reached a performance optimization point where I didn't know how to make my site on

Lapis run faster, so I kinda got nerd sniped and decided to rewrite my site in Go.

The first iteration used a Go backend with PureScript and React on the frontend. This worked for some time, but

after I realized that my target audience used weird browsers that don't support JavaScript sometimes I removed

the client side rendering entirely and had the server spit out HTML to the client like a "traditional website".

This allowed me to survive Hacker News hugs of death gracefully and is why I started putting everything into ram

in the first place. The Go port of my website handled the load like a champ.

This is when I started putting everything into one giant linked list. It was so much faster than using a cache

server but the only downside was that it made the site slower to start up. It wasn't a practical issue though.

I admit, my blog is very much an exceptional case. My website gets a lot more traffic than you could possibly

imagine (more than 100 GB per month, which is really impressive given my site mostly contains text).

When my articles get popular, they get *really* popular *really fast* and then that starts people looking at

other pages on my website. I have really unique performance requirements. The number on the slide is the number

of times I've been on the front page of news aggregators or other posts that have "gone viral". At nearly 300

posts written this means that my posts have a less than 1/10 chance of getting a lot of pageviews in a very short

amount of time, so I need to be sure that the website code runs as fast as it can for the most common use of the

most common routes.

At one point my blog was getting loaded enough that it started to make my Dokku server fall over. From plain text

HTML responses and RSS replies. Something had to give, so in a moment of weakness, I made a pact with the devil.

I put my blog on Kubernetes as a part of me learning how to use it for work. I am a very hands-on person and I

need a local copy of things in order to really feel like I understand how to use it. So I decided to commission a

freight train to mail a letter and I set up a Kubernetes cluster with Digital Ocean.

https://leafo.net/lapis/
https://olegdb.org/
https://dokku.com/
https://invite.slack.golangbridge.org/
https://www.purescript.org/

This worked out pretty great once I got past the initial setup teething issues (you need *how many* alpha

components to serve webapps???) and it worked for a long time. I was able to do continuous deployment using

GitHub Actions and made my blog minimal effort at most. I focused on writing and publishing was relegated to the

machines.

However when it blew up, it was worse than when the single server blew up. I didn't have access to the servers

that fell over. I had enough apps on the Kubernetes cluster that I couldn't just scale it down and up to unbreak

the issues. Sometimes a filesystem mount would get stuck and I didn't have a "reboot that sucker" button to

unstuck it. When that happened my [personal] Git server would stop working, which is very annoying to try and

debug while you should be focusing on your dayjob. After a while I gave up.

Then I got nerd sniped again with NixOS. With NixOS I could just directly specify what should run and where. I

had power beyond what mere mortals could attain with Docker and Kubernetes alone.

I could shape the universe of the applications in question and then proceed with that instead of trying to kit-

bosh things into shape based on overly generic tools. I can configure nginx to route to the Unix socket and then

I don't have to care about the overly generic Turing-complete YAML hell that is Kubernetes.

I think it's pretty great, but I'm also a VTuber, so take my opinions with an appropriately sized grain of salt.

The biggest thing you can take away from all this is that dynamic webapps can be very fast. Especially if they

are built to purpose. If you keep your goals in mind as you develop things out, it'll do everything you need very

quickly.

My blog stands on the shoulders of giants. Every one of these people gets a special shout-out for helping make

either my blog or this talk shine.

Thanks! You all really help more than you can imagine.

And thank you for watching! I'm going to stick around in the chat to answer any questions I haven't answered

already. If I miss your question or you really want an answer to a question outside of the chat, please email it

to howimadeblog at xeserv dot us.

I'll have a written version of this talk including my slides, a recording of the talk and everything I've said

today on my blog soon.

If you have questions, please speak up. I love answering them and I am more than happy to take the time to give a

detailed answer.

Be well, all.

Link to the slides

Share on Mastodon

This talk was posted on M09 12 2022. Facts and circumstances may have changed since publication Please contact me

before jumping to conclusions if something seems wrong or unclear.

The art for Mara was drawn by Selicre.

The art for Cadey was drawn by ArtZorea Studios.

Like what you see? Donate on Patreon like these awesome people!

Looking for someone for your team? Take a look here.

See my salary transparency data here.

Served by /nix/store/l26lms3paxdy3cm5bf93zlz298vas4s5-xesite-3.0.0/bin/xesite, see source code here.

Copyright 2012-2022 Xe Iaso (Christine Dodrill). Any and all opinions listed here are my own and not

representative of my employers; future, past and present.

>

>

https://drive.google.com/file/d/1B6dOK-nJbu30oT8fyNwBdvoOhHOJmreI/view
https://xeiaso.net/contact
https://selic.re/
https://artzorastudios.weebly.com/
https://www.patreon.com/cadey
https://xeiaso.net/patrons
https://xeiaso.net/signalboost
https://xeiaso.net/salary-transparency
https://github.com/Xe/site

