
Xe - Blog - Contact - Resume - Talks - Signal Boost - Feeds | Graphviz - When Then Zen

<Cadey> Hello! Thank you for visiting my website. You seem to be using an ad-blocker. I understand why

you do this, but I'd really appreciate if it you would turn it off for my website. These ads help pay

for running the website and are done by Ethical Ads. I do not receive detailed analytics on the ads and

from what I understand neither does Ethical Ads. If you don't want to disable your ad blocker, please

consider donating on Patreon or sending some extra cash to `xeiaso.eth` or

`0xeA223Ca8968Ca59e0Bc79Ba331c2F6f636A3fB82`. It helps fund the website's hosting bills and pay for the

expensive technical editor that I use for my longer articles. Thanks and be well!

Read time in minutes: 33

Image generated by Eimis Anime Diffusion v1.0 -- a girl, Phoenix girl, fluffy hair, pixie cut, red hair, red

eyes, chuunibyou, war, a hell on earth, Beautiful and detailed explosion, Cold machine, Fire in eyes,

burning, Metal texture, Exquisite cloth, Metal carving, volume, best quality, Metal details, Metal scratch,

Metal defects, masterpiece, best quality, best quality, illustration, highres, masterpiece, contour

deepening, illustration, (beautiful detailed girl), beautiful detailed glow, green necklace, green earrings,

kimono, fan, grin

For the sake of argument, let's say that you want to create all of your cloud infrastructure using Terraform, but

you also want to use NixOS and Nix flakes. One of the main problems you will run into is the fact that Nix flakes

and Terraform are both declarative and there's no easy way to shim Terraform states and Nix flake attributes. I

think I've found a way to do this and today you're going to learn how to glue these two otherwise conflicting

worlds together.

In order to proceed with this tutorial as written, you will need to have the following things already set up:

<Mara> Pedantically, Scaleway can be replaced with any other server host. You can also remove all of

the Tailscale-specific configuration. You can also use a different DNS provider. You may want to check

the Terraform registry for your provider of choice. Most common and uncommon clouds *should* have a

Terraform provider, but facts and circumstances may vary. GitHub can be replaced with any other git

host.

I am also making the following assumptions when writing this tutorial:

One of the first things you will need to do is create a new GitHub repository. You can give it any name you like,

but I named mine automagic-terraform-nixos.

Automagically assimilating NixOS machines into your Tailnet with Terraform

==

Requirements

A Tailscale account.-

A Scaleway account.-

An amd64 Linux machine with Nix installed or an aarch64 Linux VM with either Apple Rosetta set up or `qemu-

user` configured to let you run amd64 builds on an aarch64 host.

-

An AWS Route 53 domain set up.-

A GitHub account.-

You have a Tailscale ACL tag named `tag:prod` that you can use Tailscale SSH to access.-

You have Nix flakes enabled.-

The device running all this is on your tailnet.-

Making a new GitHub repo

https://xeiaso.net/
https://xeiaso.net/blog
https://xeiaso.net/contact
https://xeiaso.net/resume
https://xeiaso.net/talks
https://xeiaso.net/signalboost
https://xeiaso.net/feeds
https://graphviz.christine.website/
https://when-then-zen.christine.website/
https://www.ethicalads.io/
https://patreon.com/cadey
https://www.terraform.io/
https://nixos.org/
https://nixos.wiki/wiki/Flakes
https://registry.terraform.io/
https://repo.new/
https://github.com/Xe/automagic-terraform-nixos
https://tailscale.com/
https://www.scaleway.com/en/
https://aws.amazon.com/route53/
https://tailscale.com/kb/1068/acl-tags/
https://tailscale.com/tailscale-ssh/
https://nixos.wiki/wiki/Flakes#Enable_flakes

Once you have created your repo, clone it locally:

git clone git@github.com:Xe/automagic-terraform-nixos.git

Create a `.gitignore` file with the following entries in it:

result

.direnv

.env

.terraform

Now that you have a new GitHub repository to store files in, you need to collect the various credentials that

Terraform will use to control your infrastructure providers. For ease of use you will store them in a file called

`.env` and use a shell command to load those values into your shell.

Variable How to get it

`TAILSCALE_TAILNET` Copy organization name from the admin panel.

`TAILSCALE_API_KEY` Create an API key in the admin panel.

`SCW_ACCESS_KEY` Create credentials in the console and copy the access key.

`SCW_SECRET_KEY` Create credentials in the console and copy the secret key.

Next you will need to configure the AWS CLI, and by extension the default AWS API client. AWS has an excellent

guide on doing this that I will not repeat here.

<Mara> If you don't have the AWS CLI installed, use `nix run nixpkgs#awscli2` in place of the `aws`

command in that documentation.

Finally, set all of those variables into your environment with this command:

export $(cat .env |xargs -L 1)

<Mara> If you do this often, you may want to alias this command to `loaddotenv` in your shell profile.

In your git repo, create a new file called `main.tf`. This is where your Terraform configuration is going to

live. You can use any name you like, but the convention is to use `main.tf` for the "main" resources and any

supplemental resources can live in their own files.

One of the best practices with Terraform is to store its view of the world in a non-local store such as Amazon

S3. My state bucket is named `within-tf-state`, but your state bucket name will differ. Please see the upstream

Terraform documentation for more information on how to establish such a state bucket.

<Mara> If you don't set up a state bucket, Terraform will default to storing is state in the current

working directory. This state file will include generated secrets such as a Tailscale authkey. It is

best to store this in S3 to avoid leaking secrets in your GitHub repository on accident.

main.tf

terraform {

 backend "s3" {

 bucket = "within-tf-state"

Fetch credentials

Configuring Terraform

https://login.tailscale.com/admin/settings/general
https://login.tailscale.com/admin/settings/keys
https://console.scaleway.com/project/credentials
https://console.scaleway.com/project/credentials
https://docs.aws.amazon.com/cli/latest/userguide/getting-started-quickstart.html
https://developer.hashicorp.com/terraform/language/settings/backends/s3

 key = "prod"

 region = "us-east-1"

 }

}

Now that you have the state backend set up, you need to declare the providers that this Terraform configuration

will use. This will help ensure that Terraform is fetching the right providers from the right owners. Add this

block of Terraform configuration right below the `backend "s3"` block you just declared:

main.tf

terraform {

 # below the backend "s3" config

 required_providers {

 aws = {

 source = "hashicorp/aws"

 }

 cloudinit = {

 source = "hashicorp/cloudinit"

 }

 tailscale = {

 source = "tailscale/tailscale"

 }

 scaleway = {

 source = "scaleway/scaleway"

 }

 }

}

This configuration needs a few variables for things that are managed in the outside world. Scaleway requires that

every resource is part of a "project", and you will need to put that project ID into your configuration. The

Scaleway provider also allows us to have a default project ID, so you're going to put your project ID in a

variable.

The Route 53 (AWS DNS) zone will also be put in its own variable.

main.tf

variable "project_id" {

 type = string

 description = "Your Scaleway project ID."

}

variable "route53_zone" {

 type = string

 description = "DNS name of your route53 zone."

}

You can load your defaults into `terraform.tfvars`

terraform.tfvars

project_id = "2ce6d960-f3ad-44bf-a761-28725662068a"

route53_zone = "xeserv.us"

Change your project ID and Route 53 zone name accordingly.

Once that is done, you can configure the Scaleway provider. If you want to have all resources default to being

provisioned in Scaleway's Paris datacentre, you could use a configuration that looks like this:

main.tf

provider "scaleway" {

 zone = "fr-par-1"

 region = "fr-par"

 project_id = var.project_id

https://console.scaleway.com/organization/settings

}

Now that you have all of the boilerplate declared, you can get Terraform ready with the command `terraform init`.

This will automatically download all the needed Terraform providers and set up the state file in S3.

terraform init

<Mara> If you don't already have terraform installed, you can run it without installing it by replacing

`terraform` with `nix run nixpkgs#terraform` in any of these commands

Now that Terraform is initialized, you can import your Route 53 zone into your configuration by creating a `data`

resource pointing to it:

main.tf

data "aws_route53_zone" "dns" {

 name = var.route53_zone

}

To confirm that everything is working correctly, run `terraform plan` and see if it reports that it needs to

create 0 resources:

terraform plan

If it reports that your DNS zone does not exist, please verify the configuration in `terraform.tfvars` and try

again.

Create the Tailscale authkey for your new NixOS server using the `tailscale_tailnet_key` resource:

main.tf

resource "tailscale_tailnet_key" "prod" {

 reusable = true

 ephemeral = false

 preauthorized = true

 tags = ["tag:prod"]

}

Next you will need to create the cloud-init configuration for this virtual machine. Cloud-init is not exactly the

best tool out there to manage this kind of assimilation, but it is widely adopted enough because it does the job

well enough that you can rely on it.

There's many ways to create a cloud-init configuration in Terraform, but I feel that it's best to use the

cloudinit provider for this. It will let you assemble a cloud-init configuration from multiple "parts", but this

example will only use one part.

data "cloudinit_config" "prod" {

 gzip = false

 base64_encode = false

 part {

 content_type = "text/cloud-config"

 filename = "nixos-infect.yaml"

 content = sensitive(<<-EOT

#cloud-config

write_files:

- path: /etc/NIXOS_LUSTRATE

 permissions: '0600'

 content: |

 etc/tailscale/authkey

- path: /etc/tailscale/authkey

 permissions: '0600'

 content: "${tailscale_tailnet_key.prod.key}"

- path: /etc/nixos/tailscale.nix

https://registry.terraform.io/providers/tailscale/tailscale/latest/docs/resources/tailnet_key
https://cloud-init.io/
https://registry.terraform.io/providers/hashicorp/cloudinit/latest/docs

 permissions: '0644'

 content: |

 { pkgs, ... }:

 {

 services.tailscale.enable = true;

 systemd.services.tailscale-autoconnect = {

 description = "Automatic connection to Tailscale";

 after = ["network-pre.target" "tailscale.service"];

 wants = ["network-pre.target" "tailscale.service"];

 wantedBy = ["multi-user.target"];

 serviceConfig.Type = "oneshot";

 path = with pkgs; [jq tailscale];

 script = ''

 sleep 2

 status="$(tailscale status -json | jq -r .BackendState)"

 if [$status = "Running"]; then # if so, then do nothing

 exit 0

 fi

 tailscale up --authkey $(cat /etc/tailscale/authkey) --ssh

 '';

 };

 }

runcmd:

 - sed -i 's:#.*$::g' /root/.ssh/authorized_keys

 - curl https://raw.githubusercontent.com/elitak/nixos-infect/master/nixos-infect | NIXOS_IMPORT=./tailscale.ni

EOT

)

 }

}

At the time of writing, Scaleway doesn't have a prebaked NixOS image for creating new servers. One route you

could take would be to make your own prebaked image and then customize it as you want, but I think it's more

exciting to use nixos-infect to convert an Ubuntu install into a NixOS install. The `runcmd` block at the end of

the cloud-config file tells cloud-init to run nixos-infect to rebuild the VPS into NixOS unstable, but you can

change this to any other version of NixOS.

<Cadey> I personally use NixOS unstable on my servers because I value things being up to date and

rolling release.

This sounds a bit arcane (and at some level it is), but at a high level it relies on the `/etc/NIXOS_LUSTRATE`

file as described in the NixOS manual section on installing NixOS from another Linux distribution. You will use

cloud-init in the Ubuntu side to plop down the tailscale authkey into `/etc/tailscale/authkey` on the target

machine and then making sure it gets copied to the NixOS install by putting the path `etc/tailscale/authkey` into

the `NIXOS_LUSTRATE` file.

One of the other things you *could* do here is install Tailscale and authenticate to its control plane in the

Ubuntu side and then add `var/lib/tailscale` to the `NIXOS_LUSTRATE` file, but I feel that could take a bit

longer than it already takes to infect the cloud instance with NixOS.

One of the features that nixos-infect has is the ability to customize the target NixOS install with arbitrary Nix

expressions. This configuration puts a NixOS module into `/etc/nixos/tailscale.nix` that does the following:

The oneshot will read the relevant authkey from `/etc/tailscale/authkey`, which is why it is moved over from

Ubuntu.

<Cadey> Strictly speaking, you don't *have to* create a floating IP address to attach to the server,

but it is the best practice to do this. If you replace your production host in the future it may be a

good idea to have its IPv4 address remain the same. DNS propagation takes *forever*.

main.tf

resource "scaleway_instance_ip" "prod" {}

resource "scaleway_instance_server" "prod" {

 type = "DEV1-S"

 image = "ubuntu_jammy"

Enables Tailscale's node agent tailscaled-

Creates a systemd oneshot job (something that runs as a one-time script rather than a persistent service) that

will authenticate the machine to Tailscale and set up Tailscale SSH

-

https://github.com/elitak/nixos-infect
https://nixos.org/manual/nixos/stable/index.html#sec-installing-from-other-distro
https://tailscale.com/tailscale-ssh/

 ip_id = scaleway_instance_ip.prod.id

 enable_ipv6 = true

 cloud_init = data.cloudinit_config.prod.rendered

 tags = ["nixos", "http", "https"]

}

Finally you can create `prod.your.domain` DNS entries with this configuration:

resource "aws_route53_record" "prod_A" {

 zone_id = data.aws_route53_zone.dns.zone_id

 name = "prod"

 type = "A"

 records = [scaleway_instance_ip.prod.address]

 ttl = 300

}

resource "aws_route53_record" "prod_AAAA" {

 zone_id = data.aws_route53_zone.dns.zone_id

 name = "prod"

 type = "AAAA"

 records = [scaleway_instance_server.prod.ipv6_address]

 ttl = 300

}

<Mara> The reason behind creating two separate DNS entries is an exercise for the reader.

{

 inputs = {

 nixpkgs.url = "nixpkgs/nixos-unstable";

 flake-utils.url = "github:numtide/flake-utils";

 };

 outputs = { self, nixpkgs, flake-utils }:

 let

 mkSystem = extraModules:

 nixpkgs.lib.nixosSystem rec {

 system = "x86_64-linux";

 modules = [

 # bake the git revision of the repo into the system

 ({ ... }: { system.configurationRevision = self.sourceInfo.rev; })

] ++ extraModules;

 };

 in flake-utils.lib.eachSystem ["x86_64-linux" "aarch64-linux"] (system:

 let pkgs = import nixpkgs { inherit system; };

 in rec {

 devShells.default =

 pkgs.mkShell { buildInputs = with pkgs; [terraform awscli2]; };

 }) // {

 # TODO: put nixosConfigurations here later

 };

}

The outputs function may look a bit weird here, but we're doing two things with it:

It's also worth noting that the `mkSystem` function defined at the top of the outputs function will bake in the

git commit of the custom configuration into the resulting NixOS configuration. This will make it impossible to

deploy changes that are not committed to git.

Creating a development environment (devShell) with terraform and the AWS cli installed for both amd64 and

aarch64 linux systems

-

Setting up for defining `nixosConfigurations` dynamically-

Gluing the two worlds together

Now you can do the exciting bit: glue the two worlds of Nix flakes and Terraform together using the `local-exec`

provisioner and a shell script like this:

#!/usr/bin/env bash

set -e

[! -z "$DEBUG"] && set -x

USAGE(){

 echo "Usage: `basename $0` <server_name>"

 exit 2

}

if [-z "$1"]; then

 USAGE

fi

server_name="$1"

public_ip="$2"

ssh_ignore(){

 ssh -o UserKnownHostsFile=/dev/null -o StrictHostKeyChecking=no $*

}

ssh_victim(){

 ssh_ignore root@"${public_ip}" $*

}

mkdir -p "./hosts/${server_name}"

echo "${public_ip}" >> ./hosts/"${server_name}"/public-ip

until ssh_ignore "root@${server_name}" uname -av

do

 sleep 30

done

scp -o UserKnownHostsFile=/dev/null -o StrictHostKeyChecking=no "root@${server_name}:/etc/nixos/hardware-configu

rm -f ./hosts/"${server_name}"/default.nix

cat <<-EOC >> ./hosts/"${server_name}"/default.nix

{ ... }: {

 imports = [./hardware-configuration.nix];

 boot.cleanTmpDir = true;

 zramSwap.enable = true;

 networking.hostName = "${server_name}";

 services.openssh.enable = true;

 services.tailscale.enable = true;

 networking.firewall.checkReversePath = "loose";

 users.users.root.openssh.authorizedKeys.keys = [

 "ssh-ed25519 AAAAC3NzaC1lZDI1NTE5AAAAIM6NPbPIcCTzeEsjyx0goWyj6fr2qzcfKCCdOUqg0N/v" # alrest

];

 system.stateVersion = "23.05";

}

EOC

git add .

git commit -sm "add machine ${server_name}: ${public_ip}"

nix build .#nixosConfigurations."${server_name}".config.system.build.toplevel

export NIX_SSHOPTS='-o UserKnownHostsFile=/dev/null -o StrictHostKeyChecking=no'

nix-copy-closure -s root@"${public_ip}" $(readlink ./result)

ssh_victim nix-env --profile /nix/var/nix/profiles/system --set $(readlink ./result)

ssh_victim $(readlink ./result)/bin/switch-to-configuration switch

git push

Add the provisioner script to your `scaleway_instance_server` by adding this block of configuration right at the

end of its definition:

main.tf

resource "scaleway_instance_server" "prod" {

https://developer.hashicorp.com/terraform/language/resources/provisioners/local-exec

 # ...

 provisioner "local-exec" {

 command = "${path.module}/assimilate.sh ${self.name} ${self.public_ip}"

 }

 provisioner "local-exec" {

 when = destroy

 command = "rm -rf ${path.module}/hosts/${self.name}"

 }

}

This will trigger the `assimilate.sh` script to run every time a new instance is created and delete host-specific

configuration when an instance is destroyed.

Then you can hook up the `nixosConfigurations` output to the folder structure that script creates by adding the

following configuration to your `flake.nix` file:

}) // {

 nixosConfigurations = let hosts = builtins.readDir ./hosts;

 in builtins.mapAttrs (name: _: mkSystem [./hosts/${name}]) hosts;

};

This works because I am making hard assumptions about the directory structure of the `hosts` folder in your git

repository. When I wrote this configuration, I assumed that the `hosts` folder would look something like this:

hosts

└── tf-srv-naughty-perlman

 ├── default.nix

 ├── hardware-configuration.nix

 └── public-ip

Each host will have its own folder named after itself with configuration in `default.nix` and that will point to

any other relevant configuration (such as `hardware-configuration.nix`). Because this directory hierarchy is

predictable, you can get a listing of all the folders in the `hosts` directory using the `builtins.readDir`

function:

nix-repl> builtins.readDir ./hosts

{ tf-srv-naughty-perlman = "directory"; }

Then you can use `builtins.mapAttrs` to loop over every key->value pair in the attribute set that

`builtins.readDir` returns and convert the hostnames into NixOS system definitions:

nix-repl> hosts = builtins.readDir ./hosts

nix-repl> builtins.mapAttrs (name: _: ./hosts/${name}) hosts

{ tf-srv-naughty-perlman = /home/cadey/code/Xe/automagic-terraform-nixos/hosts/tf-srv-naughty-perlman; }

<Mara> The rest of this is an exercise for the reader.

Finally, now that everything is put into place you can create your server using `terraform apply`:

terraform apply

Terraform will print off a list of things that it thinks it needs to do. Please read this over and be sure that

it's proposing a plan that makes sense to you. When you are satisfied that Terraform is going to do the correct

thing, follow the instructions it gives you. If you are not satisfied it's going to do the correct thing, press

control-c.

Creating your server

https://nixos.org/manual/nix/stable/language/builtins.html#builtins-readDir
https://nixos.org/manual/nix/stable/language/builtins.html#builtins-mapAttrs

Let it run and it will automatically create all of the infrastructure you declared in `main.tf`. The entire graph

of infrastructure should look something like this:

aws_route53_record.prod_A

data.aws_route53_zone.dns

scaleway_instance_ip.prod

aws_route53_record.prod_AAAA

scaleway_instance_server.prod

provider["registry.terraform.io/hashicorp/aws"] var.route53_zone data.cloudinit_config.prod

provider["registry.terraform.io/hashicorp/cloudinit"] tailscale_tailnet_key.prodprovider["registry.terraform.io/scaleway/scaleway"]

var.project_id provider["registry.terraform.io/tailscale/tailscale"]

[root] provider["registry.terraform.io/hashicorp/aws"] (close)

[root] provider["registry.terraform.io/hashicorp/cloudinit"] (close)

[root] provider["registry.terraform.io/scaleway/scaleway"] (close)

[root] provider["registry.terraform.io/tailscale/tailscale"] (close)

[root] root

<Mara> If that is too small for you, click here. There is a lot going on in the graph because Terraform

lists everything and its ultimate dependents.

You can SSH into the server using this command:

ssh root@generated-server-name

There are many NixOS tools that you can use to push configuration changes like deploy-rs, but you can also

manually push configuration changes by following these three steps:

You can automate these steps using a script like the following:

#!/usr/bin/env bash

pushify.sh

set -e

[! -z "$DEBUG"] && set -x

validate arguments

USAGE(){

 echo "Usage: `basename $0` <server_name>"

 exit 2

}

if [-z "$1"]; then

 USAGE

fi

server_name="$1"

public_ip=$(cat ./hosts/${server_name}/public-ip)

ssh_ignore(){

 ssh -o UserKnownHostsFile=/dev/null -o StrictHostKeyChecking=no $*

}

ssh_victim(){

 ssh_ignore root@"${public_ip}" $*

}

build the system configuration

nix build .#nixosConfigurations."${server_name}".config.system.build.toplevel

copy the configuration to the target machine

export NIX_SSHOPTS='-o UserKnownHostsFile=/dev/null -o StrictHostKeyChecking=no'

nix-copy-closure -s root@"${public_ip}" $(readlink ./result)

register it to the system profile

ssh_victim nix-env --profile /nix/var/nix/profiles/system --set $(readlink ./result)

Manually pushing configuration changes

Build the new system configuration for the target machine-

Copy the system configuration to the target machine-

Activate that new configuration-

https://xeiaso.net/static/img/nix-flakes-terraform-graph.svg
https://github.com/serokell/deploy-rs

activate the new configuration

ssh_victim $(readlink ./result)/bin/switch-to-configuration switch

You can use it like this:

./pushify.sh generated-server-name

To roll back a configuration, SSH into the server and run `nixos-rebuild --rollback switch`.

One of the neat and chronically underdocumented features of NixOS is the system.autoUpgrade module. This allows a

NixOS system to periodically poll for changes in its configuration or updates to NixOS itself and apply them

automatically. It will even reboot if the kernel was upgraded.

In order to set it up, create a folder named `common` and put the following file in it:

common/default.nix

{ ... }: {

 system.autoUpgrade = {

 enable = true;

 # replace this with your GitHub repo

 flake = "github:Xe/automagic-terraform-nixos";

 };

}

Then add `./common` to the list of modules in the `mkSystem` function like this:

mkSystem = extraModules:

 nixpkgs.lib.nixosSystem rec {

 system = "x86_64-linux";

 modules = [

 ./common

 ({ ... }: { system.configurationRevision = self.sourceInfo.rev; })

] ++ extraModules;

 };

Commit these changes to git and deploy the configuration to your server:

git add .

git commit -sm "set up autoUpgrade"

git push

./pushify.sh generated-server-name

Your NixOS machines will automatically pull changes to your GitHub repository once per day somewhere around

`04:40` in the morning, local time. You can manually trigger this by running the following command:

ssh root@generated-server-name

systemctl start nixos-upgrade.service

journalctl -fu nixos-upgrade.service

This tutorial has told you everything you need to know about setting up new NixOS servers with Terraform. Here

are some exercises that you can do to help you learn new and interesting things about configuring your new NixOS

machines:

Rollbacks

Setting up automatic updates

Exercises for the reader

Set up backups to borgbase.-

Set up encrypted secret management with agenix.-

Create an AWS IAM user for your machine and copy the secret files to it. How would you do that

programmatically with a new machine? Hint: `NIXOS_LUSTRATE` can help! Use that for Let's Encrypt.

-

Try some of the services listed in the NixOS manual. How would you expose one of them over Tailscale?-

https://search.nixos.org/options?channel=unstable&show=system.autoUpgrade.channel&from=0&size=50&sort=relevance&type=packages&query=system.autoUpgrade
https://xeiaso.net/blog/borg-backup-2021-01-09
https://github.com/ryantm/agenix
https://nixos.org/manual/nixos/stable/index.html#ch-configuration

I hope this was enlightening! Enjoy your new servers and have fun exploring things in NixOS!

Share on Mastodon

This article was posted on M12 07 2022. Facts and circumstances may have changed since publication Please contact

me before jumping to conclusions if something seems wrong or unclear.

Series: nix-flakes

Tags: `Terraform` `NixOS` `Scaleway`

The art for Mara was drawn by Selicre.

The art for Cadey was drawn by ArtZorea Studios.

Like what you see? Donate on Patreon like these awesome people!

Looking for someone for your team? Take a look here.

See my salary transparency data here.

Served by /nix/store/l26lms3paxdy3cm5bf93zlz298vas4s5-xesite-3.0.0/bin/xesite, see source code here.

How would you make an instance on Vultr using this Terraform manifest? How about Digital Ocean?-

How would you attach a VPC to your server and expose it to your other machines as a subnet router with

Tailscale?

-

Set up a Pleroma server. Be sure to use Let's Encrypt to get an HTTPS certificate!-

<p><a href="https://pony.social/@cadey" class="u-url mention" rel="nofollow noopener

noreferrer" target="_blank">@cadey spicy lisp without the DSL composition though!</p>

<p>But I will stop tooting this horn and finish reading your post :)</p>

-

<p><a href="https://pony.social/@cadey" class="u-url mention" rel="nofollow noopener

noreferrer" target="_blank">@cadey I am more of a Guix girl but I will read it

nonetheless because you wrote it!!</p>

-

<p>@cwebber

 i'm sure there's things you can learn from it ^^</p>

-

<p><a href="https://pony.social/@cadey" class="u-url mention" rel="nofollow noopener

noreferrer" target="_blank">@cadey
> One of the main problems you will run into is

the fact that Nix flakes and Terraform are both declarative and there's no easy way to shim Terraform states

and Nix flake attributes. I think I've found a way to do this and today you're going to learn how to glue

these two otherwise conflicting worlds together.</p><p>DSL composition? Sounds like a job for a lisp ;)</p>

-

<p>@cwebber

 nix is basically Haskell and Haskell is just spicy lisp</p>

-

<p><a href="https://pony.social/@cadey" class="u-url mention" rel="nofollow noopener

noreferrer" target="_blank">@cadey oh no</p>

-

<p><a href="https://social.treehouse.systems/@kouhai" class="u-url

mention">@kouhai this has very cursed things explained very plainly too</p>

-

Copyright 2012-2022 Xe Iaso (Christine Dodrill). Any and all opinions listed here are my own and not

representative of my employers; future, past and present.

>

>

https://xeiaso.net/contact
https://xeiaso.net/blog/series/nix-flakes
https://selic.re/
https://artzorastudios.weebly.com/
https://www.patreon.com/cadey
https://xeiaso.net/patrons
https://xeiaso.net/signalboost
https://xeiaso.net/salary-transparency
https://github.com/Xe/site
https://registry.terraform.io/providers/vultr/vultr/latest/docs
https://registry.terraform.io/providers/digitalocean/digitalocean/latest/docs
https://registry.terraform.io/providers/scaleway/scaleway/latest/docs/resources/vpc_private_network
https://tailscale.com/kb/1019/subnets/
https://nixos.org/manual/nixos/stable/index.html#module-services-pleroma
https://nixos.org/manual/nixos/stable/index.html#module-security-acme
https://octodon.social/@cwebber/109469687892161630
https://octodon.social/@cwebber/109469668733517809
https://pony.social/@cadey/109469673041544404
https://octodon.social/@cwebber/109469681333803788
https://pony.social/@cadey/109469685010746128
https://social.treehouse.systems/@kouhai/109469551660233585
https://pony.social/@cadey/109469553319694032

