@ Fly.io Bl

READING TIME « 16 MIN ¥y Y &

How We Built Fly Postgres

@ Annie Ruygt

Like many public cloud platforms, Fly.io has a
database offering. Where AWS has RDS, and
Heroku has Heroku Postgres, Fly.io has Fly
Postgres. You can spin up a Postgres database,
or a whole cluster, with just a couple of
commands. Sign up for Fly.io and launch a full-
stack app in minutes!

Fly.io is an ambivalent database provider—one might even
use the word "reluctant”. The reasons for that are interesting,
as is the way Fly Postgres works. When we relate this in
conversations online, people are often surprised. So we
thought we'd take a few minutes to lay out where we're
coming from with databases.

We started Fly.io without durable storage. We were a
platform for "edge apps", which is the very 2019 notion of
carving slices off of big applications, leaving the bulk running

https://twitter.com/share?text=How%20We%20Built%20Fly%20Postgres&url=https://fly.io/blog/how-we-built-fly-postgres/&via=flydotio
http://news.ycombinator.com/submitlink?u=https://fly.io/blog/how-we-built-fly-postgres/&t=How%20We%20Built%20Fly%20Postgres
http://www.reddit.com/submit?url=https://fly.io/blog/how-we-built-fly-postgres/&title=How%20We%20Built%20Fly%20Postgres
https://fly.io/docs/speedrun/
https://fly.io/
https://fly.io/blog/

in Northern Virginia, and running the slices on small machines
all around the world. In an "edge app" world, not having
durable storage makes some sense: the real data store is in
us-east-1, and the slices are chosen carefully to speed the
whole app up (by caching, running an ML model, caching,
serving images, and caching).

Of course, people asked for databases from day one. But,
on days one through three hundred thirty-one, we held the
line.

Somewhere around day fifteen, we grew out of the idea of
building a platform exclusively for edge apps, and started
looking for ways to get whole big crazy things running on
Fly.io. We flirted with the idea of investing in a platform built-
in database. We rolled out an (ultimately cursed) shared
Redis. We even toyed with the idea of offering a managed
CockroachDB; like us, Cockroach is designed to run globally
distributed.

And then we snapped out of it. Databases! Feh!

Here's our 2020 reasoning, for posterity: just because we
didn't offer durable storage on the platform didn't mean that
apps running on Fly.io needed to be stateless. Rather, they
just needed to use off-platform database services, like RDS,
CrunchyData, or PlanetScale. Hooking globally distributed
applications up to RDS was (and remains) something
ordinary teams do all the time. What did we want to spend
our time building? Another RDS, or the best platform ever for
you to run stuff close to your users?

By day two hundred and ninety or so, the appeal of
articulating and re-articulating the logic of a stateless global
platform for stateful global apps began to wear off. RDS!
Feh! Somewhere around then, Jerome and Steve figured out
LVM?2, gave all our apps attached disk storage, and killed off
the stateless platform talking point.

https://github.com/cockroachdb/cockroach
https://fly.io/blog/persistent-storage-and-fast-remote-builds/

Now, disk storage is just one of the puzzle pieces for giving
apps a reliable backing store. Storage capabilities or not, we
still didn't want to be in the business of replicating all of RDS.
So we devised a cunning plan: Build the platform out so it
can run a database app, build a friendly database app for
customers to deploy on it, and add some convenience
commands to deploy and manage the app.

We wouldn't have a managed database.

No, we have an automated database.

Postgres is a good database for this. It's familiar and just
works with the migration tools baked into full-stack
frameworks.

In January 2021, we soft-launched a fly pg create

command that would deploy an automagically configured
two-node Postgres cluster complete with metrics, health
checks, and alerts. (The alerts were as cursed as our shared
Redis.) This was a big-deal effort for us. Back in 2020, we
were really small. Alimost everyone here had a hand in it.

When Shaun arrived at Fly.io later that year, he took over
the job of making Fly Postgres more reliable and more
convenient to manage—still in hard mode: developing and
shipping features that make the platform better for apps like
Fly Postgres, and making Fly Postgres plug into those.

This post is mostly ancient history! Shaun's no longer a team
of one, and lots has happened since this post should have
been written and shipped. Everything still holds; it's just more
and better now.

Postgres Is Really Cool All by Itself

Here's a way you can run Postgres on Fly.io: point fly
launch at the latest official Postgres Docker image. Remove

https://community.fly.io/t/early-look-postgresql-on-fly-we-want-your-opinions/537/18
https://hub.docker.com/_/postgres

the default services in fly.toml, since this isn't a public app.
Provision and mount a volume. Store POSTGRES_PASSWORD
as a Fly Secret. Deploy.

(Then fly sshin and create a database and user for your
app.)

If you'll only ever want this one instance, this is pretty good.
If anything happens to your lonely node, though, your
Postgres service—and so, your app—is down (and you may
have lost data).

Here's a better setup: one primary, or leader, instance that
deals with all the requests, and one replica instance nearby
(but preferably on different hardware!) that stays quietly up
to date with the latest transactions. And if the leader goes
down, you want that replica to take over automatically.
Then you have what you can call a high-availability (HA)
cluster.

Postgres has a lot of levers and buttons built right in. You
can deploy two Postgres VMs configured so one's a writable
leader and the other is a standby replica staying up to date
by asynchronous streaming_replication.

What Postgres itself doesn't have is a way to adapt cluster
configuration on the fly. It can't notify a replica that the
primary has failed and it should take over, and it certainly
can't independently elect a new leader if there's more than
one eligible replica that could take over. Something else has
to manipulate the Postgres controls to get HA clustering
behaviour.

That's where Stolon comes in.

Postgres, WAL, and Streaming
Replication

https://hub.docker.com/_/postgres
https://www.postgresql.org/docs/current/warm-standby.html
https://github.com/sorintlab/stolon

Write-Ahead Logging (WAL): Before a transaction is
applied to tables and indexes on the primary (or
only) instance, it's written to nonvolatile storage, in
the Write-Ahead Log. This means you can afford
not to write changes to every affected data file on
disk after every single transaction; if data pages in
memory are lost, they can be reconstructed by
replaying transactions from the WAL.

Postgres streaming replication sends each WAL
record along to the replica right after the transaction
is committed on the leader. As the record is
received, it's replayed to bring the replica up to date.

We have some heartier, SQLite-flavoured WAL
content around here somewhere.

Clustering With Stolon

Stolon is a Golang Postgres manager. We chose it for a few
reasons: it's open source, it's easy to build and embed in a
Docker image, and it can use Consul as its backend KV
store (we're good at Consul).

We spun up a Consul cluster for Fly Postgres to use, and
since it was there, we also made it available for any Fly app

that wanted a locking service.

Stolon comes with three components that run alongside
Postgres in each instance's VM: a sentinel, a keeper, and a

proxy.

e The lead sentinel keeps an eye on the cluster state as
recorded by keepers in the Consul store, and decides if
leadership needs to change.

» Keepers each manage their local Postgres instance,
making sure it behaves as a writable leader or a read-only

https://www.postgresql.org/docs/current/wal-intro.html
https://www.postgresql.org/docs/current/warm-standby.html#STREAMING-REPLICATION
https://fly.io/blog/sqlite-internals-wal/
https://community.fly.io/t/sneak-peak-global-lock-service/554

replica (as dictated by the leader sentinel), and update
Consul with their latest state.

» Proxies are there to route all incoming client connections
to the current leader, as recorded in the store (and only if
it's healthy).

If the leader instance fails, the proxies start dropping all
connections and Stolon elects a new leader, using Consul to
lock the database in the meantime. If both (all) your
instances fail, the database is unavailable until one or the
other recovers. New connections go to the new leader as
soon as it's ready, without rebooting clients or changing their
config.

If you've ever received a late-night email from Heroku saying
your DB was replaced, you know why this is awesome.

Stolon + Consul Intensifies

Stolon is chatty as hell with Consul, and this can be a
problem.

Keepers, sentinels, and proxies do all their communication via
the Consul leader. If a Stolon component can't reach Consul,
it repeats its request until it can. A single flapping Stolon
cluster, early on, could saturate our Consul connections.

Meanwhile, if a Stolon proxy can't reach Consul, it throws its
hands in the air and drops all client connections until it can.
We had several Postgres outages traceable to either Consul
falling over or faraway Postgres nodes not being able to
connect to it.

The more Postgres clusters people spun up, the more of a
problem this was.

Less Consul With HAProxy

The Stolon proxy relies on Consul to know which instance
to route connections to.

But Consul isn't the intrinsic authority on who the leader is:
Postgres on every instance knows its own role. If we can
replace the Stolon proxy with one that can just ask the
nodes who's leader, that's less load on our shared Consul
cluster, and if there's trouble with Consul there's one
component fewer to freak out about it.

It's not exactly supported, but it's possible to use HAProxy

with Stolon, and we did.

Here's how we've got HAProxy set up:

* HAProxy listens on port 5432 on all Fly Postgres
instances for read or write requests.

» When you create a Fly Postgres cluster using fly
postgres create, it's configured with a
PRIMARY_REGION environment variable. HAProxy gets
the list of candidates from our internal DNS server using
SPRIMARY_REGION.SFLY_APP_NAME.internal.

e Then, every two seconds, it asks the HTTP health check
server on each of these nodes for its role.

» HAProxy marks the replicas as unhealthy and removes
them from its list; it won't pass any requests to them.

» If the incumbent leader fails its role check by returning
“replica" or "offline", or not responding at all, HAProxy
drains connections from it while Stolon sorts out a new
leader.

 If there's a healthy leader, HAProxy routes all requests to
it, on port 5433 (where the keeper has told actual
Postgres to listen).

We also added Consul clusters in a couple more regions. This
spreads the burden on Consul, but crucially, it puts Consul
clusters close to people's primary Postgres VMs. Network
flokiness between Stolon and Consul breaks Stolon. The

https://github.com/sorintlab/stolon/blob/master/doc/faq.md#why-didnt-you-use-an-already-existing-proxy-like-haproxy

internet is flaky. The less internet we can span, the happier
Stolon is.

Stolon and Consul are still intense: we've been adding new
Consul clusters ever since to keep up.

Here's the Fly Postgres App

We're running a few things on each Fly Postgres VM:

o Stolon keeper

« Stolon sentinel

« HAProxy

o Postgres

e a cornucopia of internal commands and health checks

e HTTP server to serve the command and health check
endpoints

« Golang supervisor code

This is a pretty deluxe Postgres cluster app. You can shell
into a running instance and add a database, restart the PG
process, trigger a failover, run stolonctl commands directly,
and more.

Our Golang supervisor, flypg, glues the other processes
together and does nice things like try to recover from
individual process crashes before giving up and letting the
whole VM get rescheduled.

All the parts are open source; you can fork it and add
PgBouncer or whatever.

Sidenote: You can enable extensions for WAL-G,
TimescaleDB, and PostGIS yourself, without forking.

https://www.postgresql.org/
https://github.com/sorintlab/stolon
https://docs.haproxy.org/2.6/intro.html
https://github.com/fly-apps/postgres-ha
https://www.pgbouncer.org/
https://wal-g.readthedocs.io/PostgreSQL/
https://github.com/timescale/timescaledb
https://postgis.net/

So that's the Fly Postgres app. You can deploy it with fly
launch like any Fly app, straight from a clone of the
postgres-ha repo. It is faster to deploy the built image
straight from Docker Hub, and the image has version

metadata you can use to upgrade later.

The following will create a 2-instance HA cluster that apps
on your org's internal WireGuard network can connect to:

1. Copy fly.toml from the postgres-ha repo

2. Edit fly.toml to set the PRIMARY_REGION environment
variable to match the region you're about to deploy to

3. fly apps create anew app

4. Create a volume

3. Set passwords as secrets on the newly-created app:
SU_PASSWORD, REPL_PASSWORD, and
OPERATOR_PASSWORD

6. fly deploy --image=flyio/postgres:14

7. Create a second volume

8. Add a replica by scaling up to 2 instances

Then, to let an app use this Postgres:

1. Use aforementioned in-VM commands on the Postgres
leader to create a new user and database for the
consuming app (you find the leader by running fly ssh
console -C "pg-role" -s on each instance until you
hit the one with the "leader" role)

2. Then set a connection string, containing the new user
and password, as a DATABASE_URL secret on the
consuming app.

Now | don't know if | made that look complicated or simple!

It's simple for what you get. Every instance of your
postgres-ha app is a magical cluster building block! Add an
instance and it automatically becomes a member of the
cluster and starts replicating from the leader. If it's in the
PRIMARY_REGION, it's eligible to participate in leader

https://github.com/fly-apps/postgres-ha
https://hub.docker.com/r/flyio/postgres/tags
https://fly.io/blog/globally-distributed-postgres/

elections. You can add nodes in other regions, too; they
can't become leader, but you can read from them directly on
port 5433. It's all inside the app. Get a bit fancier with the

Fly-Replay header in your consuming app, and you can do

your reads from the closest instance and send your writes to
the primary region.

But yeah, this isn't quite the Fly Postgres experience. Since
we expect lots of people to deploy this exact app, it was
reasonable to bundle up that mild cluster-creation rigamarole
into a fly pg create command, which is much like fly
launch with one of our more mature framework launchers.
There are similar nuggets of flyctl convenience for managing

your fly pg created database cluster.

Fly Postgres

Launch a full-stack app now -

An Observation

We've mentioned that continual reliance on Consul is
something of an Achilles' heel for Stolon-managed clusters.
It's not unique to Stolon and Consul, but a matter of needing
a separate backend store for cluster state: in return for high
availability and Borg-like assimilation of new instances, we
accept an additional failure mode.

If you're running a single node, and you're never going to add
another one to make a cluster, there's no upside to this high-
availability machinery. A lone node is more reliable without
any of it.

https://fly.io/blog/globally-distributed-postgres/
https://fly.io/docs/flyctl/postgres/
https://fly.io/docs/speedrun/

Sidenote: We did briefly deploy a leaner, standalone
Postgres app for the "Development" fly pg create
configuration. This created a poor experience for users
wanting to scale up to a HA cluster—the plumbing wasn't
there to do it.

But quite a lot of people do run Fly Postgres on a single
instance (just for development, right??). It's still automated,
and you still get the knowledge that you're in good company
and deploying a maintained app.

The great thing is: if you really want the simpler setup, you
can just deploy your own Postgres app. It's all apps on Fly.io!

Snapshots and Restores

You can, and should, make your own backups of data that's
important to you. That being said, a restore-your-database
feature is guaranteed to make people's lives easier.

If you're shipping Postgres as a Service and don't care about
the underlying infrastructure, you'll do Postgres native
backups, copy data files and the WAL to object storage
somewhere, then restore from those. Stolon will manage this
for you.

But if you're building infrastructure that can run databases,
this doesn't move you forward: every database has its own
mechanism for backing up individual files. Some require data
dumps using specific tools, some let you copy files out of
the file system, etc.

Volumes, which hold users' persistent data—for Postgres,
SQLite, or whatever—are logical volumes on SSDs physically
installed in our servers. We have low-level block device
powers and the ability to take consistent, block-level
snapshots of a disk.

So that's how we back up a Postgres database: by
periodically grabbing a point-in-time version of the raw block
device it's on. You recover a database by restoring this to an
entirely new block device and deploying a Postgres instance
to use it.

Conveniently, that approach works for pretty much anything
that writes to a file system, solving backups for anything
you want to run on Fly.io.

Once we got user-facing snapshot restores working for
Postgres apps, we could generalize that to Volumes at large.
Which is good, because people run every database you can
think of on Fly.io.

This is a good example of "Postgres" work that was actually
platform work with an elephant face taped on. Like
persistent storage itself, shared Consul, our crap health-
check alerts, image version updates, and countless "how
should flyctl and the platform behave" minutiae.

Back to Fly Postgres vs. Managed
Databases

So Fly Postgres is an app, not a database service. This is
not a bummer: it's fascinating, | tell you! Working on this one
app helps us work through what we want the platform to
offer to apps and how to implement that. It's an intrinsic part
of the process of building a platform you could run your fully
managed database service on.

Meanwhile, we don't blame you if you'd actually prefer a
boring managed database over our fascinating app. We love
boring! Boring can be the best experience! We think the best
solution to this is to partner with service providers to do
integrations that really nail the Postgres, or MySQL, or
Redis(!), or whatever, UX on Fly.io. After all, there's no single
best database for everyone.

And for all that, heading for 2023, Fly Postgres is doing the
job for lots of apps! Automated Postgres turned out more
useful than we'd have predicted.

LAST UPDATED - NOV 29, 2022 ¥y Y @&

Chris Nicoll
@beepcat

Shaun Davis
@davissp14

Previous post ¥

Real-Time Collaboration with Replicache and Fly-Replay

a Fly.io

COMPANY ARTICLES RESOURCES
About Blog Docs
Pricing Phoenix Files Support
Jobs Laravel Bytes Status

Ruby Dispatch

CONTACT LEGAL
GitHub Security
Twitter Privacy policy

Community Terms of service

https://fly.io/
https://fly.io/about/
https://fly.io/docs/about/pricing/
https://fly.io/jobs/
https://fly.io/blog/
https://fly.io/phoenix-files/
https://fly.io/laravel-bytes/
https://fly.io/ruby-dispatch/
https://fly.io/docs/
https://fly.io/docs/support/
https://status.flyio.net/
https://github.com/superfly/
https://twitter.com/flydotio
https://community.fly.io/
https://fly.io/docs/security/
https://fly.io/legal/privacy-policy
https://fly.io/legal/terms-of-service
https://twitter.com/share?text=How%20We%20Built%20Fly%20Postgres&url=https://fly.io/blog/how-we-built-fly-postgres/&via=flydotio
http://news.ycombinator.com/submitlink?u=https://fly.io/blog/how-we-built-fly-postgres/&t=How%20We%20Built%20Fly%20Postgres
http://www.reddit.com/submit?url=https://fly.io/blog/how-we-built-fly-postgres/&title=How%20We%20Built%20Fly%20Postgres
https://twitter.com/beepcat
https://twitter.com/davissp14
https://fly.io/blog/replicache-machines-demo/

Copyright © 2022 Fly.io

