
READING TIME • 1� MIN

How We Built Fly Postgres

Like m�ny public cloud pl�tforms, Fly.io h�s �
d�t�b�se offering. Where AWS h�s RDS, �nd
Heroku h�s Heroku Postgres, Fly.io h�s Fly
Postgres. You c�n spin up � Postgres d�t�b�se,
or � whole cluster, with just � couple of
comm�nds. Sign up for Fly.io �nd l�unch � full-
st�ck �pp in minutes!

Fly.io is �n �mbiv�lent d�t�b�se provider—one might even
use the word "reluct�nt". The re�sons for th�t �re interesting,
�s is the w�y Fly Postgres works. When we rel�te this in
convers�tions online, people �re often surprised. So we
thought we'd t�ke � few minutes to l�y out where we're
coming from with d�t�b�ses.

We st�rted Fly.io without dur�ble stor�ge. We were �
pl�tform for "edge �pps", which is the very 201� notion of
c�rving slices off of big �pplic�tions, le�ving the bulk running

Annie Ruygt

https://twitter.com/share?text=How%20We%20Built%20Fly%20Postgres&url=https://fly.io/blog/how-we-built-fly-postgres/&via=flydotio
http://news.ycombinator.com/submitlink?u=https://fly.io/blog/how-we-built-fly-postgres/&t=How%20We%20Built%20Fly%20Postgres
http://www.reddit.com/submit?url=https://fly.io/blog/how-we-built-fly-postgres/&title=How%20We%20Built%20Fly%20Postgres
https://fly.io/docs/speedrun/
https://fly.io/
https://fly.io/blog/

in Northern Virgini�, �nd running the slices on sm�ll m�chines
�ll �round the world. In �n "edge �pp" world, not h�ving
dur�ble stor�ge m�kes some sense: the re�l d�t� store is in

, �nd the slices �re chosen c�refully to speed the
whole �pp up (by c�ching, running �n ML model, c�ching,
serving im�ges, �nd c�ching).

Of course, people �sked for d�t�b�ses from d�y one. But,
on d�ys one through three hundred thirty-one, we held the
line.

Somewhere �round d�y fifteen, we grew out of the ide� of
building � pl�tform exclusively for edge �pps, �nd st�rted
looking for w�ys to get whole big cr�zy things running on
Fly.io. We flirted with the ide� of investing in � pl�tform built-
in d�t�b�se. We rolled out �n (ultim�tely cursed) sh�red
Redis. We even toyed with the ide� of offering � m�n�ged
Cockro�chDB; like us, Cockro�ch is designed to run glob�lly
distributed.

And then we sn�pped out of it. D�t�b�ses! Feh!

Here's our 2020 re�soning, for posterity: just bec�use we
didn't offer dur�ble stor�ge on the pl�tform didn't me�n th�t
�pps running on Fly.io needed to be st�teless. R�ther, they
just needed to use off-pl�tform d�t�b�se services, like RDS,
CrunchyD�t�, or Pl�netSc�le. Hooking glob�lly distributed
�pplic�tions up to RDS w�s (�nd rem�ins) something
ordin�ry te�ms do �ll the time. Wh�t did we w�nt to spend
our time building? Another RDS, or the best pl�tform ever for
you to run stuff close to your users?

By d�y two hundred �nd ninety or so, the �ppe�l of
�rticul�ting �nd re-�rticul�ting the logic of � st�teless glob�l
pl�tform for st�teful glob�l �pps beg�n to we�r off. RDS!
Feh! Somewhere �round then, Jerome �nd Steve figured out
LVM2, g�ve �ll our �pps �tt�ched disk stor�ge, �nd killed off
the st�teless pl�tform t�lking point.

us-east-1

https://github.com/cockroachdb/cockroach
https://fly.io/blog/persistent-storage-and-fast-remote-builds/

Now, disk stor�ge is just one of the puzzle pieces for giving
�pps � reli�ble b�cking store. Stor�ge c�p�bilities or not, we
still didn't w�nt to be in the business of replic�ting �ll of RDS.
So we devised � cunning pl�n: Build the pl�tform out so it
c�n run � d�t�b�se �pp, build � friendly d�t�b�se �pp for
customers to deploy on it, �nd �dd some convenience
comm�nds to deploy �nd m�n�ge the �pp.

We wouldn't h�ve � m�n�ged d�t�b�se.

No, we h�ve �n �utom�ted d�t�b�se.

Postgres is � good d�t�b�se for this. It's f�mili�r �nd just
works with the migr�tion tools b�ked into full-st�ck
fr�meworks.

In J�nu�ry 2021, we soft-l�unched �
comm�nd th�t would deploy �n �utom�gic�lly configured
two-node Postgres cluster complete with metrics, he�lth
checks, �nd �lerts. (The �lerts were �s cursed �s our sh�red
Redis.) This w�s � big-de�l effort for us. B�ck in 2020, we
were re�lly sm�ll. Almost everyone here h�d � h�nd in it.

When Sh�un �rrived �t Fly.io l�ter th�t ye�r, he took over
the job of m�king Fly Postgres more reli�ble �nd more
convenient to m�n�ge—still in h�rd mode: developing �nd
shipping fe�tures th�t m�ke the pl�tform better for �pps like
Fly Postgres, �nd m�king Fly Postgres plug into those.

This post is mostly �ncient history! Sh�un's no longer � te�m
of one, �nd lots h�s h�ppened since this post should h�ve
been written �nd shipped. Everything still holds; it's just more
�nd better now.

Here's � w�y you c�n run Postgres on Fly.io: point
 �t the l�test offici�l Postgres Docker im�ge. Remove

fly pg create

Postgres Is Really Cool All by Itself

fly

launch

https://community.fly.io/t/early-look-postgresql-on-fly-we-want-your-opinions/537/18
https://hub.docker.com/_/postgres

the def�ult services in , since this isn't � public �pp.
Provision �nd mount � volume. Store
�s � Fly Secret. Deploy.

(Then in �nd cre�te � d�t�b�se �nd user for your
�pp.)

If you'll only ever w�nt this one inst�nce, this is pretty good.
If �nything h�ppens to your lonely node, though, your
Postgres service—�nd so, your �pp—is down (�nd you m�y
h�ve lost d�t�).

Here's � better setup: one prim�ry, or le�der, inst�nce th�t
de�ls with �ll the requests, �nd one replic� inst�nce ne�rby
(but prefer�bly on different h�rdw�re!) th�t st�ys quietly up
to d�te with the l�test tr�ns�ctions. And if the le�der goes
down, you w�nt th�t replic� to t�ke over �utom�tic�lly.
Then you h�ve wh�t you c�n c�ll � high-�v�il�bility (HA)
cluster.

Postgres h�s � lot of levers �nd buttons built right in. You
c�n deploy two Postgres VMs configured so one's � writ�ble
le�der �nd the other is � st�ndby replic� st�ying up to d�te
by �synchronous stre�ming replic�tion.

Wh�t Postgres itself doesn't h�ve is � w�y to �d�pt cluster
configur�tion on the fly. It c�n't notify � replic� th�t the
prim�ry h�s f�iled �nd it should t�ke over, �nd it cert�inly
c�n't independently elect � new le�der if there's more th�n
one eligible replic� th�t could t�ke over. Something else h�s
to m�nipul�te the Postgres controls to get HA clustering
beh�viour.

Th�t's where Stolon comes in.

fly.toml

POSTGRES_PASSWORD

fly ssh

Postgres, WAL, and Streaming

Replication

https://hub.docker.com/_/postgres
https://www.postgresql.org/docs/current/warm-standby.html
https://github.com/sorintlab/stolon

Write-Ahe�d Logging (WAL): Before � tr�ns�ction is
�pplied to t�bles �nd indexes on the prim�ry (or
only) inst�nce, it's written to nonvol�tile stor�ge, in
the Write-Ahe�d Log. This me�ns you c�n �fford
not to write ch�nges to every �ffected d�t� file on
disk �fter every single tr�ns�ction; if d�t� p�ges in
memory �re lost, they c�n be reconstructed by
repl�ying tr�ns�ctions from the WAL.

Postgres stre�ming replic�tion sends e�ch WAL
record �long to the replic� right �fter the tr�ns�ction
is committed on the le�der. As the record is
received, it's repl�yed to bring the replic� up to d�te.

We h�ve some he�rtier, SQLite-fl�voured WAL
content �round here somewhere.

Stolon is � Gol�ng Postgres m�n�ger. We chose it for � few
re�sons: it's open source, it's e�sy to build �nd embed in �
Docker im�ge, �nd it c�n use Consul �s its b�ckend KV
store (we're good �t Consul).

We spun up � Consul cluster for Fly Postgres to use, �nd
since it w�s there, we �lso m�de it �v�il�ble for �ny Fly �pp
th�t w�nted � locking service.

Stolon comes with three components th�t run �longside
Postgres in e�ch inst�nce's VM: � sentinel, � keeper, �nd �
proxy.

Clustering With Stolon

The le�d sentinel keeps �n eye on the cluster st�te �s
recorded by keepers in the Consul store, �nd decides if
le�dership needs to ch�nge.

•

Keepers e�ch m�n�ge their loc�l Postgres inst�nce,
m�king sure it beh�ves �s � writ�ble le�der or � re�d-only

•

https://www.postgresql.org/docs/current/wal-intro.html
https://www.postgresql.org/docs/current/warm-standby.html#STREAMING-REPLICATION
https://fly.io/blog/sqlite-internals-wal/
https://community.fly.io/t/sneak-peak-global-lock-service/554

If the le�der inst�nce f�ils, the proxies st�rt dropping �ll
connections �nd Stolon elects � new le�der, using Consul to
lock the d�t�b�se in the me�ntime. If both (�ll) your
inst�nces f�il, the d�t�b�se is un�v�il�ble until one or the
other recovers. New connections go to the new le�der �s
soon �s it's re�dy, without rebooting clients or ch�nging their
config.

If you’ve ever received � l�te-night em�il from Heroku s�ying
your DB w�s repl�ced, you know why this is �wesome.

Stolon is ch�tty �s hell with Consul, �nd this c�n be �
problem.

Keepers, sentinels, �nd proxies do �ll their communic�tion vi�
the Consul le�der. If � Stolon component c�n't re�ch Consul,
it repe�ts its request until it c�n. A single fl�pping Stolon
cluster, e�rly on, could s�tur�te our Consul connections.

Me�nwhile, if � Stolon proxy c�n't re�ch Consul, it throws its
h�nds in the �ir �nd drops �ll client connections until it c�n.
We h�d sever�l Postgres out�ges tr�ce�ble to either Consul
f�lling over or f�r�w�y Postgres nodes not being �ble to
connect to it.

The more Postgres clusters people spun up, the more of �
problem this w�s.

replic� (�s dict�ted by the le�der sentinel), �nd upd�te
Consul with their l�test st�te.
Proxies �re there to route �ll incoming client connections
to the current le�der, �s recorded in the store (�nd only if
it's he�lthy).

•

Stolon + Consul Intensifies

Less Consul With HAProxy

The Stolon proxy relies on Consul to know which inst�nce
to route connections to.

But Consul isn't the intrinsic �uthority on who the le�der is:
Postgres on every inst�nce knows its own role. If we c�n
repl�ce the Stolon proxy with one th�t c�n just �sk the
nodes who's le�der, th�t's less lo�d on our sh�red Consul
cluster, �nd if there's trouble with Consul there's one
component fewer to fre�k out �bout it.

It's not ex�ctly supported, but it's possible to use HAProxy
with Stolon, �nd we did.

Here's how we've got HAProxy set up:

We �lso �dded Consul clusters in � couple more regions. This
spre�ds the burden on Consul, but cruci�lly, it puts Consul
clusters close to people's prim�ry Postgres VMs. Network
fl�kiness between Stolon �nd Consul bre�ks Stolon. The

HAProxy listens on port 5�32 on �ll Fly Postgres
inst�nces for re�d or write requests.

•

When you cre�te � Fly Postgres cluster using
, it's configured with �
 environment v�ri�ble. HAProxy gets

the list of c�ndid�tes from our intern�l DNS server using
.

• fly

postgres create

PRIMARY_REGION

$PRIMARY_REGION.$FLY_APP_NAME.internal

Then, every two seconds, it �sks the HTTP he�lth check
server on e�ch of these nodes for its role.

•

HAProxy m�rks the replic�s �s unhe�lthy �nd removes
them from its list; it won't p�ss �ny requests to them.

•

If the incumbent le�der f�ils its role check by returning
"replic�" or "offline", or not responding �t �ll, HAProxy
dr�ins connections from it while Stolon sorts out � new
le�der.

•

If there's � he�lthy le�der, HAProxy routes �ll requests to
it, on port 5�33 (where the keeper h�s told �ctu�l
Postgres to listen).

•

https://github.com/sorintlab/stolon/blob/master/doc/faq.md#why-didnt-you-use-an-already-existing-proxy-like-haproxy

internet is fl�ky. The less internet we c�n sp�n, the h�ppier
Stolon is.

Stolon �nd Consul �re still intense: we've been �dding new
Consul clusters ever since to keep up.

We're running � few things on e�ch Fly Postgres VM:

This is � pretty deluxe Postgres cluster �pp. You c�n shell
into � running inst�nce �nd �dd � d�t�b�se, rest�rt the PG
process, trigger � f�ilover, run stolonctl comm�nds directly,
�nd more.

Our Gol�ng supervisor, flypg, glues the other processes
together �nd does nice things like try to recover from
individu�l process cr�shes before giving up �nd letting the
whole VM get rescheduled.

All the p�rts �re open source; you c�n fork it �nd �dd
PgBouncer or wh�tever.

Sidenote: You c�n en�ble extensions for WAL-G,
Timesc�leDB, �nd PostGIS yourself, without forking.

Here's the Fly Postgres App

Stolon keeper•

Stolon sentinel•

HAProxy•

Postgres•

� cornucopi� of intern�l comm�nds �nd he�lth checks•

HTTP server to serve the comm�nd �nd he�lth check
endpoints

•

Gol�ng supervisor code•

https://www.postgresql.org/
https://github.com/sorintlab/stolon
https://docs.haproxy.org/2.6/intro.html
https://github.com/fly-apps/postgres-ha
https://www.pgbouncer.org/
https://wal-g.readthedocs.io/PostgreSQL/
https://github.com/timescale/timescaledb
https://postgis.net/

So th�t's the Fly Postgres �pp. You c�n deploy it with
 like �ny Fly �pp, str�ight from � clone of the

postgres-h� repo. It is f�ster to deploy the built im�ge
str�ight from Docker Hub, �nd the im�ge h�s version
met�d�t� you c�n use to upgr�de l�ter.

The following will cre�te � 2-inst�nce HA cluster th�t �pps
on your org's intern�l WireGu�rd network c�n connect to:

Then, to let �n �pp use this Postgres:

Now I don't know if I m�de th�t look complic�ted or simple!

It's simple for wh�t you get. Every inst�nce of your
postgres-h� �pp is � m�gic�l cluster building block! Add �n
inst�nce �nd it �utom�tic�lly becomes � member of the
cluster �nd st�rts replic�ting from the le�der. If it's in the

, it's eligible to p�rticip�te in le�der

fly

launch

Copy fly.toml from the postgres-h� repo1.

Edit fly.toml to set the environment
v�ri�ble to m�tch the region you're �bout to deploy to

2. PRIMARY_REGION

 � new �pp3. fly apps create

Cre�te � volume�.

Set p�sswords �s secrets on the newly-cre�ted �pp:
, , �nd

5.

SU_PASSWORD REPL_PASSWORD

OPERATOR_PASSWORD
�. fly deploy --image=flyio/postgres:14

Cre�te � second volume7.

Add � replic� by sc�ling up to 2 inst�nces8.

Use �forementioned in-VM comm�nds on the Postgres
le�der to cre�te � new user �nd d�t�b�se for the
consuming �pp (you find the le�der by running

 on e�ch inst�nce until you
hit the one with the role)

1.

fly ssh

console -C "pg-role" -s

"leader"

Then set � connection string, cont�ining the new user
�nd p�ssword, �s � secret on the
consuming �pp.

2.

DATABASE_URL

PRIMARY_REGION

https://github.com/fly-apps/postgres-ha
https://hub.docker.com/r/flyio/postgres/tags
https://fly.io/blog/globally-distributed-postgres/

elections. You c�n �dd nodes in other regions, too; they
c�n't become le�der, but you c�n re�d from them directly on
port 5�33. It's �ll inside the �pp. Get � bit f�ncier with the
Fly-Repl�y he�der in your consuming �pp, �nd you c�n do
your re�ds from the closest inst�nce �nd send your writes to
the prim�ry region.

But ye�h, this isn't quite the Fly Postgres experience. Since
we expect lots of people to deploy this ex�ct �pp, it w�s
re�son�ble to bundle up th�t mild cluster-cre�tion rig�m�role
into � comm�nd, which is much like

 with one of our more m�ture fr�mework l�unchers.
There �re simil�r nuggets of flyctl convenience for m�n�ging
your d d�t�b�se cluster.

We've mentioned th�t continu�l reli�nce on Consul is
something of �n Achilles' heel for Stolon-m�n�ged clusters.
It's not unique to Stolon �nd Consul, but � m�tter of needing
� sep�r�te b�ckend store for cluster st�te: in return for high
�v�il�bility �nd Borg-like �ssimil�tion of new inst�nces, we
�ccept �n �ddition�l f�ilure mode.

If you're running � single node, �nd you're never going to �dd
�nother one to m�ke � cluster, there's no upside to this high-
�v�il�bility m�chinery. A lone node is more reli�ble without
�ny of it.

fly pg create fly

launch

fly pg create

Fly Postgres

Use it in something �wesome!

L�unch � full-st�ck �pp now →

An Observation

https://fly.io/blog/globally-distributed-postgres/
https://fly.io/docs/flyctl/postgres/
https://fly.io/docs/speedrun/

Sidenote: We did briefly deploy � le�ner, st�nd�lone
Postgres �pp for the "Development"
configur�tion. This cre�ted � poor experience for users
w�nting to sc�le up to � HA cluster—the plumbing w�sn't
there to do it.

But quite � lot of people do run Fly Postgres on � single
inst�nce (just for development, right??). It's still �utom�ted,
�nd you still get the knowledge th�t you're in good comp�ny
�nd deploying � m�int�ined �pp.

The gre�t thing is: if you re�lly w�nt the simpler setup, you
c�n just deploy your own Postgres �pp. It's �ll �pps on Fly.io!

You c�n, �nd should, m�ke your own b�ckups of d�t� th�t's
import�nt to you. Th�t being s�id, � restore-your-d�t�b�se
fe�ture is gu�r�nteed to m�ke people's lives e�sier.

If you're shipping Postgres �s � Service �nd don't c�re �bout
the underlying infr�structure, you'll do Postgres n�tive
b�ckups, copy d�t� files �nd the WAL to object stor�ge
somewhere, then restore from those. Stolon will m�n�ge this
for you.

But if you're building infr�structure th�t c�n run d�t�b�ses,
this doesn't move you forw�rd: every d�t�b�se h�s its own
mech�nism for b�cking up individu�l files. Some require d�t�
dumps using specific tools, some let you copy files out of
the file system, etc.

Volumes, which hold users' persistent d�t�—for Postgres,
SQLite, or wh�tever—�re logic�l volumes on SSDs physic�lly
inst�lled in our servers. We h�ve low-level block device
powers �nd the �bility to t�ke consistent, block-level
sn�pshots of � disk.

fly pg create

Snapshots and Restores

So th�t's how we b�ck up � Postgres d�t�b�se: by
periodic�lly gr�bbing � point-in-time version of the r�w block
device it's on. You recover � d�t�b�se by restoring this to �n
entirely new block device �nd deploying � Postgres inst�nce
to use it.

Conveniently, th�t �ppro�ch works for pretty much �nything
th�t writes to � file system, solving b�ckups for �nything
you w�nt to run on Fly.io.

Once we got user-f�cing sn�pshot restores working for
Postgres �pps, we could gener�lize th�t to Volumes �t l�rge.
Which is good, bec�use people run every d�t�b�se you c�n
think of on Fly.io.

This is � good ex�mple of "Postgres" work th�t w�s �ctu�lly
pl�tform work with �n eleph�nt f�ce t�ped on. Like
persistent stor�ge itself, sh�red Consul, our cr�p he�lth-
check �lerts, im�ge version upd�tes, �nd countless "how
should flyctl �nd the pl�tform beh�ve" minuti�e.

So Fly Postgres is �n �pp, not � d�t�b�se service. This is
not � bummer: it's f�scin�ting, I tell you! Working on this one
�pp helps us work through wh�t we w�nt the pl�tform to
offer to �pps �nd how to implement th�t. It's �n intrinsic p�rt
of the process of building � pl�tform you could run your fully
m�n�ged d�t�b�se service on.

Me�nwhile, we don't bl�me you if you'd �ctu�lly prefer �
boring m�n�ged d�t�b�se over our f�scin�ting �pp. We love
boring! Boring c�n be the best experience! We think the best
solution to this is to p�rtner with service providers to do
integr�tions th�t re�lly n�il the Postgres, or MySQL, or
Redis(!), or wh�tever, UX on Fly.io. After �ll, there's no single
best d�t�b�se for everyone.

Back to Fly Postgres vs. Managed

Databases

COMPANY

About

Pricing

Jobs

ARTICLES

Blog

Phoenix Files
L�r�vel Bytes
Ruby Disp�tch

RESOURCES

Docs

Support

St�tus

CONTACT

GitHub

Twitter

Community

LEGAL

Security

Priv�cy policy
Terms of service

And for �ll th�t, he�ding for 2023, Fly Postgres is doing the
job for lots of �pps! Autom�ted Postgres turned out more
useful th�n we'd h�ve predicted.

LAST UPDATED • NOV 2�, 2022

Chris Nicoll

@beepc�t

Sh�un D�vis

@d�vissp1�

Previous post ↓

Re�l-Time Coll�bor�tion with Replic�che �nd Fly-Repl�y

https://fly.io/
https://fly.io/about/
https://fly.io/docs/about/pricing/
https://fly.io/jobs/
https://fly.io/blog/
https://fly.io/phoenix-files/
https://fly.io/laravel-bytes/
https://fly.io/ruby-dispatch/
https://fly.io/docs/
https://fly.io/docs/support/
https://status.flyio.net/
https://github.com/superfly/
https://twitter.com/flydotio
https://community.fly.io/
https://fly.io/docs/security/
https://fly.io/legal/privacy-policy
https://fly.io/legal/terms-of-service
https://twitter.com/share?text=How%20We%20Built%20Fly%20Postgres&url=https://fly.io/blog/how-we-built-fly-postgres/&via=flydotio
http://news.ycombinator.com/submitlink?u=https://fly.io/blog/how-we-built-fly-postgres/&t=How%20We%20Built%20Fly%20Postgres
http://www.reddit.com/submit?url=https://fly.io/blog/how-we-built-fly-postgres/&title=How%20We%20Built%20Fly%20Postgres
https://twitter.com/beepcat
https://twitter.com/davissp14
https://fly.io/blog/replicache-machines-demo/

Copyright © 2022 Fly.io

