
Building arbitrary Life
patterns in 15 gliders

The Conway’s Game of Life community
celebrated a landmark achievement on November
9th, 2022. An idea years in the making, the
“Reverse Caber Tosser” design finally had all of
the pieces it needed to achieve its stated goal.

That goal is simple. Select any pattern that can be
built in Life – for example, the Waterbear. Begin
with a small number of gliders (now 15) in an
otherwise empty Game of Life universe. After
enough time goes by, those gliders need to build
that pattern. No extra leftover debris, no stray

16 Nov, 2022

a blog by biggiemac42

https://btm.qva.mybluehost.me/building-the-waterbear-spaceship-conway-life/
https://btm.qva.mybluehost.me/


How is this even
possible?

Questionablebeginnings

scaffolding, just a pure synthesis of whatever you
chose.

This post will talk about how it works, how we got
there, and why it’s so cool.

From an information theory perspective, an
arbitrary selected pattern can have unbounded
amounts of complexity. Every one of these
patterns needs a different initial set of gliders.

With 15 gliders (or any fixed number), the only
difference between one initial set and another is
where they start. Since we have infinitely many
patterns to create, we must list infinitely many 15
glider arrangements. This is possible, but only by
taking advantage of a correspondingly unbounded
amount of distance between at least one pair of
gliders in the recipe.

With that constraint comes some hope. The fact
that we need to use a lot of distance, guides us to
our first principle. Distance itself encodes
information.

The prompt to get people thinking about this came
in 2015, in a truly bizarre fashion.

It began with Gustavo, a Conway’s Game of Life
enthusiast from Brazil who had a tendency to go
far off topic in the forums. In a new thread,
Gustavo rambled about a secret leaked Morse
code signal from MIT he was decoding, which
seemed to be discussing “Game of Life –
 Spaceship Synthesis Research”. The community
interaction with this thread was honestly hilarious.
Some people trying to humor Gustavo, asking for

a blog by biggiemac42

https://conwaylife.com/forums/viewtopic.php?f=12&t=1596#p16399
https://btm.qva.mybluehost.me/


Universal constructor

proof, others trying to make the inconsistencies in
his story more obvious.

Everything about this story was imaginative
nonsense, with no substance. User
“gameoflifeboy” described it as “the weirdest
thread on the forum so far in 2015”. But one part
stuck out. Gustavo said that through his
eavesdropping, he learned that a previously
unknown spaceship, larger than the Caterpillar,
had a synthesis in 386 gliders.

Adam Goucher, a mathematician of some
notoriety and author of the cp4space blog, treated
this as plausible. Not plausible in origin, as the
story was just the brainchild of an internet troll.
But rather, plausible that a super-complex pattern
can be synthesized in a relatively small number of
gliders. In his words:

As long as we can synthesise a
universal constructor in 385, the
entire blueprint could be encoded
in the *distance* between the final
glider and the constructor (by
Godel coding or otherwise).

― Adam Goucher

Universal constructors came up in my
Waterbear post as well. I’ll try to treat the topic a
little better this time around, by analogy to Turing
Machines.

One often hears that a Turing Machine is just as
powerful as a modern computer, in that it can run
all of the same algorithms (but maybe taking more
time). And similarly, one often hears that much
weaker systems, like Rule 110, are just as
powerful as a Turing Machine. Despite being

a blog by biggiemac42

https://www.gabrielnivasch.org/fun/life/caterpillar
https://cp4space.hatsya.com/
https://btm.qva.mybluehost.me/building-the-waterbear-spaceship-conway-life/
https://btm.qva.mybluehost.me/simulating-rule-110-in-opus-magnum/
https://btm.qva.mybluehost.me/


This easy-to-watch synthesis takes 33 gliders. There is now a
footnote on the corresponding wiki page saying that it can be
constructed in fewer using RCT.

Example

neither the most nor least efficient example of a
computer, the Turing Machine is the canonical
baseline for computational ability. Any system with
equivalent computational ability, is deemed
“Turing Complete”.

In shifting back to Conway’s Game of Life, replace
computation by construction. Systems are
equivalent if they can build all of the same things,
regardless of efficiency. For a canonical baseline,
we can use arbitrary collections of gliders
converging from infinity, like in the pattern below
synthesizing a “weekender” spaceship.

While gliders colliding aren’t as powerful as just
scribbling a pattern of your choosing (
notable examples), they’re pretty darn close. And
so a universal constructor can be regarded as any
system (glider-based or otherwise) allowing a
recipe for every possible glider construction.

a blog by biggiemac42

https://conwaylife.com/wiki/Category:Patterns_that_can_not_be_constructed_with_gliders
https://btm.qva.mybluehost.me/


To reuse the example I gave in the Waterbear
post, here’s a demonstration of universal
construction via carefully-spaced gliders along a
single shared lane. Watch through to the end to
see how it could build items far away from that
lane.

0:00

This serves to show that gliders along a single
lane are, in a sense, “just as powerful” as
synchronized gliders coming from all directions.
The two systems can both build the same things.
It definitely takes more gliders when they are all
on a single lane. But, it has the same eventual
capability.

In order to prove this, the community needed a
process to convert a recipe from one system into
another. The reduction looks like this:

Build synchronized gliders from multiple
directions by creating a “seed
constellation”, made of a bunch of objects
that turn into gliders when the reaction
reaches them.

Build a seed constellation by sending
gliders one at a time towards a target
(when gliders are not synchronized, this
is called a “slow salvo”).

Find a way to use an “elbow” to convert
incoming partially-synchronized gliders
from the single lane, into a desired slow
salvo.

This is just a taste of the jargon to follow. But in
principle, it makes sense. Seed constellations are
as powerful as glider collisions. Slow salvos can
make seed constellations, so they too are just as
powerful as glider collisions. And construction

a blog by biggiemac42

https://btm.qva.mybluehost.me/


Shortcuts

elbows, including the “0 degree” elbow in the
video above, are just another way to generate
slow salvos, so the equivalence goes all the way
down.

A lot of effort in the past years has gone into
directly creating slow salvo recipes for important
objects. Notably, in the previous video, there
wasn’t much of a seed constellation at all.
Instead, the big important object in the reflector
emerged from a single glider reaching the existing
carefully-constructed mess.

However, if you want to get it done quick, a lot of
the times making any old recipe will go through
the whole reduction. See below for an example
seed constellation building Alan Hensel’s famous
1994 “decimal counter” pattern.

At a further zoom, once built:

a blog by biggiemac42

https://btm.qva.mybluehost.me/


The sequence of digits is encoded in the loops of gliders at the
bottom. This pattern from 1994 is often regarded as the
progenitor of all “display” patterns, which have come
a long way since.

Back on topic
Now we have seen a couple examples of
universal constructor systems, and a couple
examples of interesting things they can construct.
Everything you have already seen, can now be
made in 15 gliders.

The weekender. The specific collection of 33
gliders that I showed making a weekender. The
collection of thousands of single lane gliders with

a blog by biggiemac42

https://www.youtube.com/watch?v=xP5-iIeKXE8
https://btm.qva.mybluehost.me/


Synthesizing a universalconstructor

Or does it?

careful spacing, that build the reflector. The
decimal counter, or the seed constellation for it.

Ultimately, the achievement of the Reverse Caber
Tosser (RCT) project is that we can now build all
of these things cleanly, using 15 initial gliders.

It’s slightly paradoxical to consider a “synthesis” of
any of the current examples of universal
constructors. These systems embed the recipe for
the Actual Thing Being Constructed, in the
spacing or position of an unbounded number of
objects, frequently gliders. Naively, each instance
of a construction therefore takes a different
number of gliders, failing the goal.

It’s not unheard of to use some small number of
gliders to create a larger number of gliders. As a
rather trivial example, the Gosper Glider Gun
takes 8 gliders to build, and 2 to destroy. Letting it
run for longer before destruction will create more
gliders. But, the gliders out of a gun like this are
highly regular, and won’t encode any more novel
system of construction no matter how long you let
it run.

a blog by biggiemac42

https://btm.qva.mybluehost.me/


What if..

The Caber Tosser

What about a design that somehow built and
destroyed every possible thing, in order, until an
interrupt arrived that told it to stop on the current
thing? It’s a nice thought experiment, but it quickly
runs into problems. The task of destroying a thing
without knowing what it is, is hard. What’s more,
some things include spaceships that escape at
high speed. Nothing you could build would be
able to go catch and destroy it.

No, what was needed was a way to read
information from the “far away” stuff multiple
times, and have each read communicate new
information. In no way would a single read suffice.

Way back in 1991, Dean Hickerson built a pattern
which bounced a glider back and forth between a
stationary object and a distant spaceship. Each
time, the length of the trip would double.
Something similar was used in the recent
tetration machine, but Hickerson’s old design was
built for niceness, rather than anti-optimized for
slowness.

a blog by biggiemac42

https://btm.qva.mybluehost.me/telling-the-tale-of-two-tetrations/
https://btm.qva.mybluehost.me/


Here we start to see the problem with watching things at these
scales..

In reverse

To understand why it doubles, we can do some
spacetime math. The glider moves diagonally by 1
tile every 4 ticks. The distant spaceship, a
“cordership”, moves diagonally 8 tiles every 96
ticks, or 1 per 12 on average. If the original
distance between them is D, then the amount of
time it takes for the glider to catch the cordership
is D / (1/4 – 1/12), or 6D generations. Then the
glider turns around, and covers the same distance
to get back to where it started, another 6D
generations. In total, 12D generations elapse,
moving the cordership D tiles further away, a
clean doubling.

With the stationary object configured to do
something each time it reflects a glider, the result
looks like the below.

0:00

Each glider sent out takes twice as long as the
previous. This gives logarithmic population
growth, which is cool on its own.

Now consider what happens if the cordership,
instead of moving away from the rest of the
machine, moves towards it. It still can bounce a
signal back and forth a number of times.

a blog by biggiemac42

https://btm.qva.mybluehost.me/


A two-glider signal reflected from an approaching cordership into two
different gliders in the other direction

Bit-reading

But now there’s a limit. Eventually the cordership
arrives, and the whole thing goes splat.

What you get is a series of signals, each one
taking half as long to arrive as the previous, until
the distance can no longer be halved.

What’s more, the new glider doesn’t need to go
back to the cordership right away. It could do so
with a slight delay, using some synchronizing
circuitry. Perhaps it could do so in a way that
“rounded down” the previous halving.

If we call a glider we need to round down a 1, and
one that we don’t a 0, then the original position of
the cordership gives us a list of 1s and 0s. A finite
list of 1s and 0s is a potential recipe. Just as we
hoped, there’s a way that distance encodes
information. And not just information, but discrete
bits that are read at separate times.

This is the Reverse Caber Tosser, or RCT. The
name refers to any system that bounces a signal

a blog by biggiemac42

https://btm.qva.mybluehost.me/


The messy details

Incomplete design #1:
329 gliders

back and forth, halving the distance each time,
and reading out the parity as a new bit of
information.

Now all that we needed to do was

Find a way for these 0s and 1s to
function as a universal constructor

Find the simplest glider recipe for a
system with Reverse Caber Tosser
properties

Build a recipe with the 0s and 1s that not
only made the Actual Thing Being
Constructed, but also cleaned up the
entirety of the RCT’s mess

As you could probably guess, not one of these
tasks was simple. In most cases, the community
focused only on the first two bullet points, leaving
the latter as a theoretical certainty. As a result,
most of the original designs were incomplete,
never building an Actual Thing. But the community
tracked the glider count anyway.

Dave Greene and Adam Goucher were the first to
check off bullet point #1. Having ample
experience with construction arms from his
previous ambitious projects, Greene stripped the
concept down to a barebones system of PULL
and DFIRE. A PULL would grab the next block in
a long line of blocks, and move it closer to the
machinery. A DFIRE would destroy that block, and
send a glider in a perpendicular direction towards
the construction zone. This was messy, but all of
the mess was stationary objects. Importantly,
there were no rogue spaceships at any point. And
the gliders being sent towards the construction

a blog by biggiemac42

https://btm.qva.mybluehost.me/


Getting more minimal
with Switch Engines

zone comprised a slow salvo. A slightly restricted
kind of slow salvo, but a kind which had
previously been proven universal.

With a simple proof of concept pattern that sent a
couple of each of PULL and DFIRE, they
announced success. A short while later,
“Goldtiger997” came up with a glider synthesis of
this pattern, in 329 gliders. That’s bullet point #2.
Every combination of PULLs and DFIREs could
be generated by moving the handful of gliders that
built the cordership, back to the proper distance.

In Dave Greene’s blog post about it, he remarks
that in order to actually succeed at its goals, the
PULLs and DFIREs needed to build a lot of self-
destruction circuitry right before the cordership
arrived with a splat. That’s bullet point #3. Nobody
made this, but they were content to believe it
possible.

For a little bit more game of life jargon, the Switch
Engine is the core reaction of the cordership.
Discovered back in 1971 by Charles Corderman,
when Conway’s Game of Life was just a year old,
it travels 8 cells diagonally every 96 generations.
Unfortunately, a single switch engine leaves
enough extra junk behind that it eventually
succumbs to the void.

a blog by biggiemac42

http://b3s23life.blogspot.com/2018/06/fixed-cost-glider-construction-part-ii.html
https://btm.qva.mybluehost.me/


The corderships combine multiple switch engines
in a way that cleans up the junk. However, there
are two ways to stabilize a single switch engine.

The first is the “block-laying switch engine”. By
adding a single block to a switch engine, it
becomes stable. The extra junk becomes a simple
diagonally repeating pattern of blocks. This is the
mechanism used in the 329 glider RCT to provide
arbitrarily many blocks with a finite recipe.

The second is the “glider-producing switch
engine”. This has a much bulkier ash pattern,
which includes a consistent barrage of gliders in
the direction of travel.

a blog by biggiemac42

https://btm.qva.mybluehost.me/


Cheaper, Messier, and
Just as Capable

The block-laying and glider-producing switch
engines are the two most common infinite growth
patterns in the game of life, in terms of frequency
emerging from random initial conditions. The
glider-producing switch engine in particular,
became the star of the show in RCT reductions.

A glider-producing switch engine (GPSE) moves
at the same speed as a cordership, and creates
its own predictable stream of gliders. The first
reductions to the RCT’s glider cost came from
replacing most of the stationary circuitry by glider
streams shooting from GPSEs. Twelve GPSEs in
total could replace the entire decoder mechanism,
leading to a much more resounding splat at the
moment of convergence. Since a GPSE takes
only 4 gliders to synthesize, and the decoder
mechanism was the most expensive part of the
synthesis, this slashed the cost of the RCT to 59
gliders. This reduction offloaded even more work
to the embedded recipe, as now it had 12 ash
trails to clean up.

Other insights during 2018 reduced this to 35
gliders, with some changes in the decoding

a blog by biggiemac42

https://btm.qva.mybluehost.me/


MathAndCode

The key reactions

method, but generally the same idea. Each design
was universally capable, and the gargantuan task
of actually using it to clean up after itself was an
afterthought, not completed.

Over the next two years, insights from Chris Cain
and Adam Goucher saved 3 more gliders,
bringing the cost to 32. Then in September 2020,
a new contributor made a shocking improvement.

Daniel Vargas, also known as MathAndCode,
joined the forums in late August 2020. His first
post was in the thread discussing the RCT
project. He asked why the approaching object
encoding the distance needed to be a cordership
variant. Why couldn’t it be a single GPSE? A
GPSE would be cheaper and more versatile.

Adam Goucher supplied a good answer, but not a
perfect one. There were technical challenges
because of the higher period of the GPSE. It
seemed like it would be more difficult to get
working. MathAndCode wasn’t dissuaded from
trying.

Less than two weeks later, he posted “
Potential universal construction in 16±2 gliders“.

The GPSE indeed has a higher period than a
cordership – it takes 384 ticks to complete an orbit
rather than 96. Due to the doppler effect, using a
GPSE to handle incoming gliders from an
antiparallel GPSE requires that two different
interactions, 192 ticks apart, both return a signal.

Now, if you send a glider towards an oncoming
GPSE as you would towards a cordership in the
original RCT, a few things might happen:

a blog by biggiemac42

https://conwaylife.com/forums/viewtopic.php?f=2&t=4415&p=103766#p103766
https://btm.qva.mybluehost.me/


Four GPSEs and a
target

It ruins the GPSE (bad)

It emits a stray glider into the void which
could never be cleaned up (bad)

It collides with some of the ash left
behind, returning a new glider back the
way it came (good)

It removes/prevents creation of one glider
from the GPSE’s stream (also good!)

The last bullet point is good because a hole
where you expect a glider, is just as useful of a
signal as a glider.

MathAndCode found a key pair of interactions.
One of them returned a glider, and the other 192
ticks apart returned a hole. Not only did this allow
a GPSE to replace the oncoming cordership, it
solved the “rounding down” problem outright. The
circuitry, if it could even be called that anymore,
became even simpler.

With this redesign, the number of GPSEs needed
to create a functioning RCT dropped to four.

One that encodes the recipe.

One that supplies the signal gliders to interact and
read distance parity.

Two more, at a 90 degree angle, to coordinate the
circuitry, clean up all of the other gliders, and
supply construction commands for 0 and 1s.

When MathAndCode made his post, it wasn’t
entirely clear that the available 0 and 1
commands were a true universal set. But Adam
Goucher did some automated searching through
the binary strings, and found hope. Without
making any unrecoverable messes, there were all
of the following (text copied from
Adam’s post here):

a blog by biggiemac42

https://conwaylife.com/forums/viewtopic.php?f=2&t=4415&sid=f1d7ad8c935d34a9c767233cad394603&start=50#p104484
https://btm.qva.mybluehost.me/


A nagging question
about cleanup

a 3fd pull and 4fd push, which together
allow arbitrary-integer fd moves;

a nondestructive glider emission reaction;

a destructive block creation reaction
which throws the block beyond any of the
lanes used for either of the above;

a 14fd pull which can follow an elbow-
duplication operation.

This was a universal set. Since the four GPSEs
took 4 gliders apiece, and the initial target object
required one more glider, MathAndCode had
dropped the magic number from 32 to 17. The
community celebrated. People pondered whether
there would be any additional snags getting the
universal constructor to actually clean up the
whole mess. But it all seemed possible in theory.
Right?

How is it possible that the messy GPSEs, leaving
a smear of debris across space, could ever be
cleaned up? Every bit read by the constructor
required doubling that amount of debris, so we
needed a solution that didn’t care how much
debris there was.

The solution for that problem was corderships.
The constructor could build corderships that
naturally deleted objects in the debris stream
when they passed by. A finite amount of work to
handle an unbounded amount of debris. The
constructor could also build “corderabsorbers” at
the furthest point of the debris stream, which
made that cleanup crew self destruct at the end. It
didn’t matter how far that furthest point was,
because there were already some unique objects
at the original location where the GPSE was
created. The constructor could leverage those as
glider targets to start building.

a blog by biggiemac42

https://btm.qva.mybluehost.me/


Theory and premature
optimization

Technological
limitations

Of course, the cleanup crew had to begin after
everything already went splat in the middle, which
meant that the constructor had to build a way to
read a heavily-delayed signal. Also, the spots in
the encoding GPSE’s stream where the bit reads
happened had very different debris, so the
cleanup had to be able to handle that. Still, the
community understood a theoretical solution to all
of the problems.

The rest of the task was connecting “we have a
universal constructor” to “here is the gargantuan
task for this universal constructor to accomplish”.
Similar to finishing the Waterbear, this is a strange
mix of busywork and pioneering development. It’s
like rote programming in a language nobody has
ever used before.

The community enjoyed optimizing something that
didn’t even exist yet. Even more acronyms sprung
forth, the most important one being the Decoder
and Better Construction Arm, or DBCA. In effect,
the DBCA was the only thing that the universal
constructor actually built using its universal set.
Once built, the DBCA directly consumed those
same 1s and 0s. It collected them into 9-bit
codons to do far more powerful operations using a
far more powerful construction arm. By spending
a lot of bits to build something it didn’t need to
build, the RCT now could get a lot of mileage out
of every additional bit. The cost more than paid for
itself, even just during the process of building the
cleanup corderships. The community was
confident that this was the right choice for
minimizing the total number of bits needed in the
recipe.

a blog by biggiemac42

https://btm.qva.mybluehost.me/


Over the finish line

Counting is hard

With around 1,200,000 bits spent just creating the
DBCA, the initial distance had to be on the order

of 21200000. By the time the DBCA was
constructed, the population of the life universe
(mostly GPSE debris) would be of a similar
magnitude. The best Game of Life emulator could
maybe handle populations and generation counts

of order 210000, but this was well past its limit.

In the interest of actually being able to demo this
accomplishment, the community came up with a
technique called the “semilator”. Added to the
initial recipe were two streams of orthogonal
spaceships. Every time a pair arrived, it would
add a new output bit to the constructor, without
changing the bouncing RCT glider signal at all.

The demo patterns became 28 bits of “proper”
RCT, with a million or more injected bits in
between the second and third RCT signal.
Everything was adequately spaced to function the
same as if the bits were truly read from the RCT,
but now it could fit in Golly.

Dave Greene, with admirable patience organizing
the myriad trains of thought present in this
community, made an official checklist of remaining
problems for the project. Pavel Grankovskiy,
(Pavgran, who was also the main designer in the
Conway’s Game of Life portion of my tetration
post), methodically checked items off the list, one
after another.

On November 9th, Pavgran shared a semilator
pattern for the 16-glider construction of the
Decimal Counter. All of the careful cleanup was
now a reality.

a blog by biggiemac42

https://golly.sourceforge.net/
https://conwaylife.com/forums/viewtopic.php?f=2&t=5847#p152565
https://btm.qva.mybluehost.me/


16? The title says 15 and the work by
MathAndCode only achieved 17.

Well, the technology was effectively the same
throughout. But, during 2022, a user known as
dani or Danielle began seriously and
systematically investigating switch engines. She
found a way to synthesize the pair of GPSEs
controlling all the circuitry and construction,
together in only 7 gliders instead of separately
using 8. This led to 16 being the magic number
during the bulk of the checklist. After posting the
complete demo for RCT 16, Pavgran worked with
dani to find yet another reduction, now reducing
the price of making the initial target. One of the
alternate 4-glider GPSE recipes ejected a stray
glider, which another GPSE stream could
intercept similarly to the extra glider in the older
design. The first handful of bits needed to be
updated, along with some of the cleanup logic, but
the rest of the design would function just as well.

4 in the top left, 4 in the bottom right, and 7 in the
bottom left, for 15 gliders in total. In between
them, some over-500,000-digit number of tiles of
empty space.

a blog by biggiemac42

https://btm.qva.mybluehost.me/


Breakdown of Bits

Something to watch

At the time of writing, dani has fittingly changed
her Discord display name to “switch engine
sorceress”.

For the updated 15-glider construction of the
Decimal Counter, there are 1665791 bits. Most
are supplied by the semilator, but the first 2 and
final 26 come from the RCT mechanism. With a
different initial position, all bits would come from
the RCT. (The pattern would also be so large as
to need a new specialized emulator to be able to
view it).

The high level breakdown of how those bits are
used is as follows:

1274729 – build a DBCA and pass
control to it

192584 – build a new constructor that
reads stored data instead of live data

The final 200093 bits get stored in the
Binary Storage and Retrieval device,
these same 200093 bits are counted
below:

The Big Splat happens, everything
afterward is read from storage

133900 – lots of cleanup

58173 – build the Actual Thing Being
Constructed (will be different number of
bits for different ATBC)

8020 – constructor finishes cleanup
(including itself!) in a way that activates
the seed constellation, leaving only the
ATBC behind

Notably, building the DBCA takes up roughly 75%
of the total bits. However, the remaining 25% of
the bits accomplish 80% of the total work, as
measured by number of slow-salvo gliders. This
reflects the drastic efficiency improvement of
using a better construction arm.

a blog by biggiemac42

https://btm.qva.mybluehost.me/


Achievement Complexity Computation
Conway's
Game Of
Life

4 thoughts on
“Building arbitrary Life
patterns in 15 gliders”

Ok, I get it. This is a Conway’s Game of Life post,
and it has contained criminally few watchable gifs.
Part of the reason is that the scale being
considered here is effectively unfathomable.
Fortunately, some of the community members
involved in this task have done their best to make
a demo-viewing demo script.

I’ve recorded it below. Enjoy!

0:00

a blog by biggiemac42

https://btm.qva.mybluehost.me/tag/achievement/
https://btm.qva.mybluehost.me/tag/complexity/
https://btm.qva.mybluehost.me/tag/computation/
https://btm.qva.mybluehost.me/tag/conways-game-of-life/
https://btm.qva.mybluehost.me/


Pingback:
Building arbitrary Life patterns in 15 gliders - My
Blog

1

Nemo says:

2022-11-22 at 1:09 am

Reply

2

Hello. Quite an impressive
achievement. But isn’t the thought
that the distance can only encode “a
single 0 or 1 at a time” quite an
inefficient relic from programmer/chip
designed thought?

Conway’s game isn’t limited to purely
binary circuitry. One could build a
sort of “analog” clock construction,
which counted time spent since
sending a signal. As distance can be
an arbitrarely large number, then the
number generated from “counting the
distance” could be used (along with a
decoder) to encode the instructions
for any constructible structure.

This allows potentially to use much
less generations and resources than
the “rounding down into a single 0 or
1 each time a glider returns” method.
You would only need one glider and
a “clock” to represent any number
with an initial distance.

Nemo says:

2022-11-22 at 1:27 am

3

Also and furthermore, going with my
“clock” idea, the distance stuff
doesn’t even need to be gliders. It
can be a static 4-block , since all we
need is for it to be far away, and the
clock will send the glider and count
how far away it is. Alternatively, if the

a blog by biggiemac42

https://simpleenews.qblnet.us/2022/11/20/building-arbitrary-life-patterns-in-15-gliders/
http://tuscriaturas.miraheze.org/
http://tuscriaturas.miraheze.org/
https://btm.qva.mybluehost.me/


Leave a Reply

Reply

far away thing *is* a glider, the clock
doesn’t need to send one to count
the distance. It can just start counting
automatically after being created,
and have the glider arriving stop the
count. The number can be arbitrary
in regards to how far away the initial
glider (or block) is.

Biggiemac42 says:

2022-11-22 at 3:34 pm

Reply

1

Thanks for writing!

Something like this is covered in
the “What if?” but the issue
complicating things is that you
need to read and decode multiple
chunks of information at different
times. One read, even if it
contains a lot of information, won’t
spell an unambiguous recipe
without a massive decoding
scheme, comparable to the
bouncing already happening here.
15 gliders (assuming the goal is
just to minimize that number)
would be hard to beat. If the goal
is instead to find a larger fixed
number with a different-and-
possibly-simpler approach, sure I
could believe it possible.

In any rate, I don’t think the
concept of “single 0 or 1” is a relic
of programmer thought.
Information theory distills data into
bits, whether or not you would be
dealing in bits naturally. When you
want the simplest resolvable piece
of data, that is one bit. The use of
bits to build a recipe is natural in
that sense.

Your email address will not be published.
Required fields are marked *

Comment *

Name *

Email *

Website

Save my name, email,
and website in this
browser for the next
time I comment.

POST COMMENT

sitemap

a blog by biggiemac42

https://btm.qva.mybluehost.me/sitemap.xml
https://btm.qva.mybluehost.me/


Reply

  a blog by biggiemac42

https://twitter.com/biggiemac42
https://www.linkedin.com/in/brett-berger-068567178
https://www.youtube.com/user/bigmacdontcare
https://btm.qva.mybluehost.me/

