Massively increase your productivity on personal projects with comprehensive
documentation and automated tests

| gave a talk at DjangoCon US 2022 in San Diego last month about productivity on personal projects.

I’m maintaining a /ot of different projects at the moment. Somewhat unintuitively, the way I’'m handling this is
by scaling down techniques that I've seen working for large engineering teams spread out across multiple
continents.

The key trick is to ensure that every project has comprehensive documentation and automated tests. This
scales my productivity horizontally, by freeing me up from needing to remember all of the details of all of the
different projects I'm working on at the same time.

You can watch the talk on YouTube (25 minutes). Alternatively, I've included a detailed annotated version of
the slides and notes below.

Increase your productivity on personal projects with comprehensive docs and autom...

https://simonwillison.net/
https://www.youtube.com/watch?v=GLkRK2rJGB0
https://www.youtube.com/watch?v=GLkRK2rJGB0

Massively increase your productivity on
personal projects with comprehensive
documentation and automated tests

Simon Willison, DjangoCon US 2022

Talk notes are linked from github.com/simonw

This was the title I originally submitted to the
conference. But | realized a better title was probably...

Coping strategies for the serial
project hoarder

Simon Willison, DjangoCon US 2022

Talk notes are linked from github.com/simonw

Coping strategies for the serial project hoarder

This video is a neat representation of my approach to
personal projects: | always have a few on the go, but |
can never resist the temptation to add even more.

https://twitter.com/devisridhar/status/1576170527882121217

My PyPI profile (which is only five years old) lists 185

Python packages that I've released. Technically I'm
actively maintaining all of them, in that if someone
reports a bug I'll push out a fix. Many of them receive
new releases at least once a year.

Aside: | took this screenshot using shot-scraper with a
little bit of extra JavaScript to hide a notification bar at
the top of the page:

shot-scraper 'https://pypi.org/user/simonw/"' \
--javascript "
document.body.style.paddingTop = 0;
document.querySelector(
'#sticky-notifications'
) .style.display = 'none';
" --height 1000

How can one individual maintain 185 projects?

Surprisingly, I’'m using techniques that I've scaled down
from working at a company with hundreds of engineers.

https://pypi.org/user/simonw/
https://shot-scraper.datasette.io/

| spent seven years at Eventbrite, during which time the
engineering team grew to span three different
continents. We had major engineering centers in San
Francisco, Nashville, Mendoza in Argentina and Madrid
in Spain.

Consider timezones: engineers in Madrid and engineers
in San Francisco had almost no overlap in their working
hours. Good asynchronous communication was
essential.

Over time, | noticed that the teams that were most
effective at this scale were the teams that had a strong
culture of documentation and automated testing.

As | started to work on my own array of smaller personal
projects, | found that the same discipline that worked for
large teams somehow sped me up, when intuitively |
would have expected it to slow me down.

The perfect commit

Implementation + Tests + Documentation

and a link to an issue thread

| wrote an extended description of this in The Perfect
Commit.

I've started structuring the majority of my work in terms
of what | think of as “the perfect commit”—a commit that
combines implementation, tests, documentation and a
link to an issue thread.

As software engineers, it's important to note that our job
generally isn’t to write new software: it's to make
changes to existing software.

As such, the commit is our unit of work. It's worth us
paying attention to how we cen make our commits as
useful as possible.

https://simonwillison.net/2022/Oct/29/the-perfect-commit/

Here’s a recent example from one of my projects,
Datasette.

It's a single commit which bundles together the
implementation, some related documentation
improvements and the tests that show it works. And it
links back to an issue thread from the commit message.

Let’s talk about each component in turn.

Implementation

It should just do one thing

(“thing” here is deliberately vague!)

There’s not much to be said about the implementation:
your commit should change thing!

It should only change one thing, but what that actually
means varies on a case by case basis.

It should be a single change that can be documented,
tested and explained independently of other changes.

(Being able to cleanly revert it is a useful property too.)

https://github.com/simonw/datasette/commit/ddc999ad1296e8c69cffede3e367dda059b8adad

Tests

Prove that the implementation works

Pass if the new implementation
is correct, fail otherwise

The goals of the tests that accompany a commit are to
prove that the new implementation works.

If you apply the implementation the new tests should
pass. If you revert it the tests should fail.

| often use git stash to try this out.

If you tell people they need to write tests for every single
change they’ll often push back that this is too much of a
burden, and will harm their productivity.

Every project should start with a test

assert1 +1 ==2is fine!

Adding tests to an existing test suite is SO MUCH
less work than starting a new test suite from scratch

But | find that the incremental cost of adding a test to an
existing test suite keeps getting lower over time.

The hard bit of testing is getting a testing framework
setup in the first place—with a test runner, and fixtures,
and objects under test and suchlike.

Once that’s in place, adding new tests becomes really
easy.

So my personal rule is that every new project starts with
a test. It doesn’t really matter what that test does—what
matters is that you can run pytest to run the tests, and

you have an obvious place to start building more of
them.

| maintain three cookiecutter templates to help with this,
for the three kinds of projects | most frequently create:

= simonw/python-lib for Python libraries

= simonw/click-app for command line tools

= simonw/datasette-plugin for Datasette plugins

Each of these templates creates a project with a
setup.py file, a README, a test suite and GitHub
Actions workflows to run those tests and ship tagged
releases to PyPI.

| have a trick for running cookiecutter as part of
creating a brand new repository on GitHub. | described
that in Dynamic content for GitHub repository templates
using cookiecutter and GitHub Actions.

https://cookiecutter.readthedocs.io/
https://github.com/simonw/python-lib
https://github.com/simonw/click-app
https://github.com/simonw/datasette-plugin
https://simonwillison.net/2021/Aug/28/dynamic-github-repository-templates/

This is a hill that | will die on: your documentation must
live in the same repository as your code!

You often see projects keep their documentation
somewhere else, like in a wiki.

Inevitably it goes out of date. And my experience is that
if your documentation is out of date people will lose trust
in it, which means they’ll stop reading it and stop
contributing to it.

The gold standard of documentation has to be that it's
reliably up to date with the code.

The only way you can do that is if the documentation
and code are in the same repository.

This gives you versioned snapshots of the
documentation that exactly match the code at that time.

More importantly, it means you can enforce it through
code review. You can say in a PR “this is great, but don’t
forget to update this paragraph on this page of the
documentation to reflect the change you're making”.

If you do this you can finally get documentation that
people learn to trust over time.

Another trick | like to use is something | call
documentation unit tests.

The idea here is to use unit tests to enforce that
concepts introspected from your code are at least
mentioned in your documentation.

| wrote more about that in Documentation unit tests.

Here’s an example. Datasette has a test that scans
through each of the Datasette plugin hooks and checks
that there is a heading for each one in the
documentation.

https://simonwillison.net/2018/Jul/28/documentation-unit-tests/
https://github.com/simonw/datasette/blob/0.63.1/tests/test_docs.py#L41-L53

The test itself is pretty simple: it uses pytest
parametrization to look through every introspected
plugin hook name, and for each one checks that it has a
matching heading in the documentation.

The final component of my perfect commit is this: every
commit must link to an issue thread.

I'll usually have these open in advance but sometimes
I'll open an issue thread just so | can close it with a
commit a few seconds later!

Here’s the issue for the commit | showed earlier. It has
11 comments, and every single one of those comments

is by me.

| have literally thousands of issues on GitHub that look
like this: issue threads that are effectively me talking to
myself about the changes that I'm making.

It turns out this a fantastic form of additional
documentation.

What goes in an issue?

= Background: the reasons for the change. In six
months time you’ll want to know why you did this.

= State of play before-hand: embed existing code, link
to existing docs. | like to start my issues with “I'm
going to change this code right here”—that way if |
come back the next day | don’t have to repeat that
little piece of research.

= Links to things! Documentation, inspiration, clues
found on StackOverflow. The idea is to capture all of
the loose information floating around that topic.

https://github.com/simonw/datasette/issues/1809

= Code snippets illustrating potential designs and false-
starts.

= Decisions. What did you consider? What did you
decide? As programmers we make decisions
constantly, all day, about everything. That work
doesn’t have to be invisible. Writing them down also
avoids having to re-litigate them several months later
when you’ve forgotten your original reasoning.

= Screenshots—of everything! Animated screenshots
even better. | even take screenshots of things like the
AWS console to remind me what | did there.

= When you close it: a link to the updated
documentation and demo

The reason | love issues is that they’re a form of
documentation that I think of as temporal
documentation.

Regular documentation comes with a big commitment:
you have to keep it up to date in the future.

Issue comments skip that commitment entirely. They’re
displayed with a timestamp, in the context of the work
you were doing at the time.

No-one will be upset or confused if you fail to keep them
updated to match future changes.

So it's a commitment free form of documentation, which
| for one find incredibly liberating.

| think of this approach as issue driven development.

Everything you are doing is issue-first, and from that you
drive the rest of the development process.

This is how it relates back to maintaining 185 projects at
the same time.

With issue driven development you don’t have to
remember anything about any of these projects at all.

I've had issues where | did a bunch of design work in
issue comments, then dropped it, then came back 12
months later and implemented that design—without
having to rethink it.

I've had projects where | forgot that the project existed
entirely! But I've found it again, and there’s been an
open issue, and I've been able to pick up work again.

It's a way of working where you treat it like every project
is going to be maintained by someone else, and it's the
classic cliche here that the somebody else is you in the
future.

It horizontally scales you and lets you tackle way more
interesting problems.

Programmers always complain when you interrupt them
—there’s this idea of “flow state” and that interrupting a
programmer for a moment costs them half an hour in
getting back up to speed.

This fixes that! It's much easier to get back to what you
are doing if you have an issue thread that records where
you've got to.

Issue driven development is my key productivity hack
for taking on much more ambitious projects in much
larger quantities.

Another way to think about this is to compare it to
laboratory notebooks.

Here’'s a page from one by Leonardo da Vinci.

Great scientists and great engineers have always kept
detailed notes.

We can use GitHub issues as a really quick and easy
way to do the same thing!

https://en.wikipedia.org/wiki/Studies_of_the_Fetus_in_the_Womb

Another thing | like to use these for is deep research
tasks.

Here’s an example, from when | was trying to figure out
how to run my Python web application in an AWS
Lambda function:

Figure out how to deploy Datasette to AWS Lambda
using function URLs and Mangum

This took me 65 comments over the course of a few
days... but by the end of that thread I'd figured out how
to do it!

Here’s the follow-up, with another 77 comments, in
which | figure out how to serve an AWS Lambda
function with a Function URL from a custom subdomain.

| will never have to figure this out ever again! That's a
huge win.

https://github.com/simonw/public-notes is a public
repository where | keep some of these issue threads,
transferred from my private notes repos using this trick.

https://github.com/simonw/public-notes/issues/6
https://github.com/simonw/public-notes/issues/1
https://github.com/simonw/public-notes
https://til.simonwillison.net/github/transfer-issue-private-to-public

The last thing | want to encourage you to do is this: if
you do project, tell people what it is you did!

This counts for both personal and work projects. It's so
easy to skip this step.

Once you've shipped a feature or built a project, it's so
tempting to skip the step of spending half an hour or
more writing about the work you have done.

But you are missing out on so much of the value of your
work if you don’t give other people a chance to
understand what you did.

| wrote more about this here: What to blog about.

For projects with releases, release notes are a really
good way to do this.

| like using GitHub releases for this—they’re quick and
easy to write, and | have automation setup for my
projects such that creating release notes in GitHub
triggers a build and release to PyPI.

https://simonwillison.net/2022/Nov/6/what-to-blog-about/

I've done over 1,000 releases in this way. Having them
automated is crucial, and having automation makes it
really easy to ship releases more often.

Please make sure your release notes have dates on
them. | need to know when your change went out,
because if it's only a week old it's unlikely people will
have upgraded to it yet, whereas a change from five
years ago is probably safe to depend on.

| wrote more about writing better release notes here.

This is a mental trick which works really well for me. “No
project of mine is finished until I've told people about it
in some way” is a really useful habit to form.

Twitter threads are (or were) a great low-effort way to
write about a project. Build a quick thread with some
links and images, and maybe even a video.

Get a little unit about your project out into the world, and
then you can stop thinking about it.

(’m trying to do this on Mastodon now instead.)

https://simonwillison.net/2022/Jan/31/release-notes/
https://simonwillison.net/2022/Nov/5/mastodon/

Even better: get a blog! Having your own corner of the
internet to write about the work that you are doing is a
small investment that will pay off many times over.

(“Nobody blogs anymore” | said in the talk... Phil Gyford
disagrees with that meme so much that he launched a
new blog directory to show how wrong it is.)

The enemy of projects, especially personal projects, is
guilt.

The more projects you have, the more guilty you feel
about working on any one of them—because you're not
working on the others, and those projects haven't yet
achieved their goals.

You have to overcome guilt if you’re going to work on
185 projects at once!

https://ooh.directory/blog/2022/welcome/

This is the most important tip: avoid side projects with
user accounts.

If you build something that people can sign into, that’s
not a side-project, it's an unpaid job. It's a very big
responsibility, avoid at all costs!

Almost all of my projects right now are open source
things that people can run on their own machines,
because that’s about as far away from user accounts as
| can get.

| still have a responsibility for shipping security updates
and things like that, but at least I'm not holding onto
other people’s data for them.

| feel like if your project is tested and documented, you
have nothing to feel guilty about.

You have put a thing out into the world, and it has tests
to show that it works, and it has documentation that
explains what it is.

This means | can step back and say that it's OK for me
to work on other things. That thing there is a unit that
makes sense to people.

That's what | tell myself anyway! It's OK to have 185
projects provided they all have documentation and they
all have tests.

Do that and the guilt just disappears. You can live guilt
freel

You can follow me on Mastodon at
@simon@simonwillison.net or on GitHub at
github.com/simonw. Or subscribe to my blog at
simonwillison.net!

From the Q&A:

= You've tweeted about using GitHub Projects. Could
you talk about that?

= GitHub Projects V2 is the perfect TODO list for me,
because it lets me bring together issues from
different repositories. | use a project called
“Everything” on a daily basis (it's my browser
default window)—I add issues to it that | plan to
work on, including personal TODO list items as well
as issues from my various public and private
repositories. It's kind of like a cross between Trello
and Airtable and | absolutely love it.

= How did you move notes from the private to the public
repo?
= GitHub doesn’t let you do this. But there’s a trick |
use involving a temp repo which | switch between

public and private to help transfer notes. More in
this TIL.

https://fedi.simonwillison.net/@simon
https://github.com/simonw
https://simonwillison.net/
https://docs.github.com/en/issues/planning-and-tracking-with-projects/learning-about-projects/about-projects

= Question about the perfect commit: do you commit
your failing tests?

= | dont: | try to keep the commits that land on my
main branch always passing. I'll sometimes write
the failing test before the implementation and then
commit them together. For larger projects I'll work in
a branch and then squash-merge the final result
into a perfect commit to main later on.

Posted 26th November 2022 at 3:47 pm - Tagged productivity, talks, testing, documentation - Follow @simonw on

Twitter

https://simonwillison.net/2022/Nov/26/
https://simonwillison.net/tags/productivity/
https://simonwillison.net/tags/talks/
https://simonwillison.net/tags/testing/
https://simonwillison.net/tags/documentation/
https://twitter.com/simonw
https://github.com/simonw/simonwillisonblog
https://simonwillison.net/2002/
https://simonwillison.net/2003/
https://simonwillison.net/2004/
https://simonwillison.net/2005/
https://simonwillison.net/2006/
https://simonwillison.net/2007/
https://simonwillison.net/2008/
https://simonwillison.net/2009/
https://simonwillison.net/2010/
https://simonwillison.net/2011/
https://simonwillison.net/2012/
https://simonwillison.net/2013/
https://simonwillison.net/2014/
https://simonwillison.net/2015/
https://simonwillison.net/2016/
https://simonwillison.net/2017/
https://simonwillison.net/2018/
https://simonwillison.net/2019/
https://simonwillison.net/2020/
https://simonwillison.net/2021/
https://simonwillison.net/2022/

