
 (/book)

Emacs 28 Edition is out now!

(/book#free-sample)

(/book)

Keyboard Shortcuts every Command Line Hacker
should know about GNU Readline

Most command line programs that offer line editing

– like bash, Python, GDB, psql, sqlite and more – do

so using GNU readline. Readline's a powerful library

that grants history, completion, movement and

editing to programs that use it — and a stable and

consistent set of keyboard shortcuts.

Shame, then, that even serious command line

READ A FREE SAMPLE

LEARN MORE

https://www.masteringemacs.org/book
https://www.masteringemacs.org/book#free-sample
https://www.masteringemacs.org/book

hackers never bother learning about its capabilities,

as they can supercharge your command line

productivity.

By Mickey Petersen (/about)

https://www.masteringemacs.org/about

T here’s a large body of command line hackers who, despite their incredible
skill and speed, never cottoned on to the fact that line editing –
editing text on a prompt, like the one in Python or bash – is a skill

that is transferable and worth learning.
Line editing is not a novel concept, nor a new one. On Linux, the most
common line reader is GNU readline. It provides a framework for basic
completion, movement, editing and prompt history.
In bash it’s used when you press <TAB> to complete a file name; navigate
through your input history with the arrow keys; or edit and type text at the
prompt. In fact, it’s so ubiquitous – yet veiled behind the programs it
supports – that people credit bash, and not readline, for many of its novel
features.
But GNU readline’s a lot more capable than you might think. By default it
uses Emacs key bindings, but you may already know that. Yet a surprising
number of hackers – even ardent Emacs users – never bothered exploring its
capabilities. (There is also, in the interest of full disclosure, a Vi emulation
layer.)

Most people plateau when they learn about Control+r for reverse history
isearch. But there are many reasons to learn keep learning:
☛︎Quick Keyboard Macro Recording

Tired of tediously manipulating a complex prompt when you decide you
want to pass the prompt output to fzf or grep ?
Maybe you keep having to type the same repetitive incantation in gdb or
python , over and over again?

Maybe you have to write the same SELECT statements over and over again
in psql ?

So why not use a keyboard macro? You can record, play back, and save
them for later. And they can – if you want – work across programs that
use GNU readline.

☛︎Smarter History Use

There’s more to GNU readline’s history commands than merely
navigating up or down the history list. Most are specialized; but they are
all worth learning about.

☛︎Faster Movement and Editing

Learn a handful of Emacs key bindings and they’ll pay dividends across a
swathe of programs. Whether it’s bash or SQLite’s command line
interface, the key bindings remain the same — and some even augment
the defaults with specialized commands specific to that program.

Memorize once, use (nearly) everywhere!

Of course, most Emacs hackers don’t bother, because Emacs has its own shell
integration (/article/running-shells-in-emacs-overview), and that does the
job 99% of the time.
So why bother learning about GNU readline if you’re an Emacs maven?
Because, when you next find yourself out in the cold – or if you wholly
reject the warm embrace of Emacs – you’ll have a set of standardized key
bindings that greatly improves your productivity. There’s also a rich set of
features you can access with little effort, and they work well in a wide range
of disparate command line applications.
So if you’re sick and tired of reaching for the arrow keys just to edit or move
around the prompt: Hark! For there are better ways abound.

Basics, Caveats & Useful Defaults
But, let’s get the basics out of the way first.
GNU readline has its own little configuration language, and the global
settings for it are usually found in /etc/inputrc . When it’s done reading
the global file, it’ll check for a user-local file in ~/.inputrc .

https://www.masteringemacs.org/article/running-shells-in-emacs-overview

Like Emacs, readline respects Emacs’s notation for shortcuts: C- is Control;
C-M- is Control and Alt in unison. Like Emacs, readline is also capable of
simple chords: C-x p and C-x C-r are both legitimate chords: press and
release Control+x followed by p , for instance. So far, so Emacs.
GNU readline is not universally used. If you’re not using Linux, your
application may not use readline at all. And some programs have their own
line editor implementation, like Zsh.

The .inputrc file
However, in the .inputrc file you should know that the M- qualifier does
not work. Instead, write \e for Meta; and \C for Control. There is also a
long-form format, but I find it cumbersome and the parser a bit wonky. And
in any event, in a readline keyboard macro – more on keyboard macros later
– you have to use this notation anyway, so you may as well standardize on
the shorthand notation.

Correct - binds to C-x q

"\C-xq": "Hello, World"

Correct - binds to C-M-p

"\e\C-p": "Good Bye!"

Variables are set with set :

set expand-tilde on

You can also limit settings to certain programs:

$if Bash

 # ...

$else

 # ...

$endif

Determining the name is not easy though without reading the source.

Useful Defaults
One thing that catches people out about Emacs-style key bindings in
readline is its hidden timeout. By default the keyseq-timeout value is a
rather ambitious 500 ms. I find that far too quick, so I change it 1200 ms:

set keyseq-timeout 1200

Most distros seem to leave readline’s color highlighting for completion
disabled. I don’t know why, as it’s helpful.

Colored completion of partial matches in bash

set colored-stats on

set colored-completion-prefix on

Readline looks at your LS_COLORS environment variable to determine what
the highlighting should look like. If it’s missing, it’ll use a reasonable default.

Basic Navigation and Editing

For command line editing, knowing a handful of basic keys is all you need
to greatly speed up your typing and, on that account, your productivity. If
you’re already familiar with Emacs’s movement keys (/article/effective-
editing-movement), then you’ll know them all, already.

Key Binding Description

C-b , C-f Move backward/forward one
character

M-b , M-f Move backward/forward by word

C-a , C-e Move to the beginning/end of the
line

C-w , M-d Kill word backward/forward

C-d , Backspace Delete char forward/backward
C-d may send EOF on an empty
line

C-k , C-u Kill (to clipboard) to end of
line/beginning of line

C-y Yank from kill ring

M-y (after C-y) Cycle through kill ring history

C-t , M-t Transpose character/word

M-u , M-l , M-c Upper, lower, or capitalize forward
word

C-_ , C-x C-u , C-/ Cycle through the undo list

https://www.masteringemacs.org/article/effective-editing-movement

Although GNU readline maintains a kill ring (clipboard), which works much
like Emacs’s kill ring, it’s not shared with your system’s clipboard, nor any
other instances of GNU readline. It is, in effect, local to the process you’re
running.
GNU readline also has limited support for Emacs’s universal and numeric
arguments, so it’s possible to type M-2 M-d to kill two words forward. You
can also supply negative arguments with M-- : M-- M-u uppercases the word
preceding point.
Undo is also worth knowing about. It’s different than Emacs’s undo ring, as
it’s linear, and is reset when the prompt is.
Knowing how to go to the beginning and end of a line; deleting and
moving by word; and a little bit about killing and yanking will go a long
way.
Taken together and you have the rudiments of Emacs’s most basic editing
suite available in a wide range of command line applications.

Less Useful Key Bindings
Key Bindings Description

C-@ , M-SPC Set mark

C-x C-x Swap point and mark

C-q or C-v Quoted insert

C-] , M-C-] Character search forward/backward

M-# Insert a comment

C-x C-r Reload .inputrc file(s)

C-c C-l Clear screen

The concept of the mark – one half of the dynamic duo, with point being
the other one, that makes up the text selection region in Emacs – is also
present in GNU readline. However, there is no support for visualizing the
selected region: you’re going to have to remember where the mark is! This is
like Emacs before M-x transient-mark-mode became a thing.
That, combined with the editing scope limited to a line of text, means it’s not
really such a useful thing to know about.
Quoted insert is useful if you regularly have to insert keyboard escape codes.
Like ^[for ANSI control codes. To insert ^[, type C-q ESC .
You can also comment out the line with M-# but I find its utility minimal in
a line editor where commenting out a line has narrow applications.
Finally there’s C-x C-r . That key is really only useful if you’re
experimenting with your .inputrc file. Invoking the key binding will
silently force readline to reload its settings. That means you can experiment
and not have to restart your program to test your changes.

Keyboard Macros
This is where, in my opinion, the value of GNU readline really kicks in.
Like Emacs, readline has a keyboard macro recorder. It’s nowhere near as
advanced as Emacs’s keyboard macro recorder (/article/keyboard-macros-are-
misunderstood); but you only need the basics.
You can record, play back, and print out keyboard macros.

That is more useful than it seems, and it can save you a lot of typing:
1. If you’re a frequent user of fzf – or ezf, if you want the Emacs

equivalent (/article/fuzzy-finding-emacs-instead-of-fzf) – then I’m
sure you have ritualized the practice of piping stuff to said tool:

$ apt-cache search emacs

https://www.masteringemacs.org/article/keyboard-macros-are-misunderstood
https://www.masteringemacs.org/article/fuzzy-finding-emacs-instead-of-fzf

Could be transformed into this with a quick’n’dirty keyboard macro:

$ $(apt-cache search emacs | ezf -f 1)

At that point you’re free to take the command substitution and feed it
into a command of your choice — like apt-get possibly. Remember,
you can leave the point wherever you like: at the beginning or end of
the prompt; or maybe at the pipe, so you can quickly change the
parameters.

2. You can wrap prompts in simple commands, like dir(...) or
help(...) , in Python.

3. Keyboard macros can be made global or local and written by hand.
No recording required.

4. You can create one on-the-fly, and only later bind it to a key if you
find it useful enough to keep around.

To truly make use of the macro functionality you must first bind the
command print-last-kbd-macro to a key in your .inputrc file:

"\C-xP": print-last-kbd-macro

Here I bind it to C-x P . But feel free to use another key binding. Note the
backslashed C .

Key Bindings Description

C-x (, C-x) Start/Stop macro recorder

C-x e Play last macro

C-x P Print out macro (Note you must
bind the command to a key for this
to work)

To start recording type C-x (. Unlike Emacs – or indeed unlike many other
parts of GNU readline that signal state changes, like prefix arguments – it
does not tell you it’s recording, which is quite infuriating. Nevertheless, you
can stop recording with C-x) and then play back your newly-minted
macro with C-x e .
I would recommend you experiment a bit. There are few things it can’t
record. It’s limited to just this line; you cannot macro record (or play back)
across multiple prompt invocations. Keep that in mind.
Calling C-x P (or a key binding of your own choosing) spits out the macro
string needed to replay the macro. You can put it in your .inputrc after
binding it to a string, but make sure you double quote it if it is not quoted
already.
Here’s one that calls out to fzf (or ezf), bound to C-x F :

"\C-xF": "\C-e | fzf)\C-a(\C-a$\C-b\C-a"

If you look closer, you’ll see that it’s just a string with a bunch of key
bindings. So you can indeed write your own.
To test it works, type C-x C-r to reload your .inputrc .
I personally think the keyboard macro functionality is an underrated gem. I
can’t imagine too many people know about or use it. Which is a real shame!

Try Mastering Emacs for Free
Your e-mail here

Text Completion

GET FREE SAMPLE

Whether it’s bash or another tool of your choosing, it may have some form
of TAB-based completion. By default the builtin GNU readline command
complete is bound to TAB or C-i (they’re one and the same control code, in
actual fact.) But what most people don’t know is that is just the beginning.
Bash, for instance, extends the completion system and adds a host of
specialized completion commands.

Key Bindings Description

TAB , C-i Complete at point

M-? List possible completions at point

M-* Insert all completions

M-~ Complete tilde

The most common – the one everyone knows – is TAB . When a developer
integrates GNU readline into their application, they may decide to support
readline’s underlying completion engine. Python does this; that’s why you
can do basic completion with TAB in a Python shell.
There are a couple more that are quite specialized, but worth knowing
about.
M-? directs readline to display the completions at point. This is pretty much
the same as hitting TAB multiple times, but with a crucial difference: M-?
won’t autocomplete parts of your query as TAB would.

M-* is more interesting. It takes all possible completion matches – sourced
from M-? – and inserts them into your prompt. Now you can edit them
before you pass them to another program.

If you frequently use ~ – referring to your home directory – you can use M-
~ to complete against it, as though you’d TAB -completed. Other programs
may not implement it, or they handle it differently. Python inserts the path

to your home directory, for instance. The variable expand-tilde partly
controls this.

History Search
Every GNU readline program implements its own unique history list, but (as
you’d expect) they share a common set of key bindings you can use to
navigate that list.

Key Bindings Description

M-< , M-> Go to beginning/end of the history
list

C-r , C-s Reverse/Forward isearch history

M-p , M-n Query search backward/forward
through history list

M-. Yank (insert) last argument

C-p , C-n , Up , Down Previous/Next history entry

I’m sure you’re familiar with the <up> and <down> arrows to move through
history. C-p and C-n serve the same purpose.
Both M-< and M-> move to the very beginning and end of the history list.
Not that useful, but if regularly cycle through the history then it’s useful to
know that you can do so from either end, at will.
The history commands I love most, aside from navigating up or down, are
the isearch – incremental search – history commands bound to C-r and C-s .
Both search the history, incrementally, as you type. They’re incredibly useful

and a hallmark of readline. Lots of people know about C-r but somehow
never tweaked C-s : it searches forward, and you can mix and match the two
to skim through the history matches.

NOTE: If C-s freezes your terminal, you can blame the superannuated
“flow control” feature — it stops the flow of text so you can pause at will
and read it. Wonderful feature in the 1980s when your teletype would
type faster than you could read the text. Less so today.
Typing stty -ixon disables it.

In addition to incremental history search, there’s M-p and M-n . Type either
and you’re asked to input a search string. Pressing RET jumps to the first
match. It has its uses, but if you normally run your shells in Emacs
(/article/running-shells-in-emacs-overview) you’ll find it frustrating as M-p
and M-n is how you navigate history in M-x shell .
Put this incantation in your .inputrc to rewire those two keys to also step
through the history:

"\ep": previous-history

"\en": next-history

That leaves M-. . It inserts the last argument of the last command; repeat it
and you’ll step through previously-used prompt arguments. I find it useful if
I regularly have to regurgitate a common argument:

$ grep *.txt foo.*

Typing M-. now inserts foo.*:

$ rg █ # -> rg foo.*

Discovering Key Bindings

https://www.masteringemacs.org/article/running-shells-in-emacs-overview

Because GNU readline is so extensible, it’s not uncommon for programs to
create their own commands and key bindings that apply only to that
program. The key bindings I talked about earlier are, broadly speaking,
available everywhere — even if they don’t really make sense in the context of
that application.
But bash, being a GNU product, has a large range of extended key bindings
and commands you should know about.
But in order to discover them you really need to know about the dump
commands. They are unbound by default. Here’s what I have bound them
to:

"\e\C-f": dump-functions

"\e\C-v": dump-variables

Typing C-M-f prints out all known functions; C-M-v all known variables.
Give them a prefix argument (e.g., M-1 C-M-f) and readline spits out
.inputrc -compatible code you can paste into your own settings file.

Bash-specific Key Bindings
There are many; so I encourage you to explore yourself. But I’ll list a couple
of my favorites.

Key Bindings Description

C-M-e Expand environment variable

M-! Complete command

M-/ Complete filename

M-@ Complete hostname

M-$ Complete variable

C-x C-e Edit and execute command in Emacs

C-M-o Expand using dynamic abbrev.
(Unbound by default; see below.)

C-M-e takes an environment variable at point and expands it inline. Useful
for things like manipulating the order of things in $PATH , or tweaking the
contents of one variable before storing it in another.
The other completers – M-! , M-/ , M-/@ , M-$ – attempt a specialized,
narrower version of the common completer bound to TAB . They have their
uses: when you must insert a variable, for example.
Dynamic Abbrev (/article/text-expansion-hippie-expand) is an Emacs feature
that has made the leap – sort of, anyway – into readline. It looks at the word
at point and attempts to expand it using previously-seen history values. So, if
you previously typed in a complex word – say a hostname – you can ask
readline to recall it anywhere in a prompt:

$ ping secret.setec-astronomy.example.com

Typing C-M-o expands to the full hostname.

$ ssh sec█

It is not bound by default, so I recommend C-M-o :

"\e\C-o": dabbrev-expand

Repeated invocations cycle through the matches. It’s a fantastic command.
Finally I want to mention C-x C-e , which is really quite cool. When you
invoke C-x C-e , then bash/readline will send the current prompt to your
$EDITOR for further processing.

https://www.masteringemacs.org/article/text-expansion-hippie-expand

If you have your Emacs running in client-server mode (M-x server-start ,
for instance) and your $EDITOR set to emacsclient then you can indeed edit
the prompt in Emacs before returning it from whence it came with C-x # .
Great for more complex edits.

My Settings
Here’s a snapshot of my .inputrc . It’s mostly about making things even
more Emacs-like, plus a couple of basic macros.

Mickey's .inputtrc

Change the timeout for key sequences as 500ms is too fast.

set keyseq-timeout 1200

By default, completions are not highlighted in color.

set colored-stats on

set colored-completion-prefix on

BASH

$if Bash

Wrap a command in $(...)

"\C-xq": "\C-a\$(\C-e)"

Wrap a command in $(.... | ezf -f 1)

"\C-xF": "\C-e | ezf -f 1)\C-a(\C-a$\C-b\C-a"

C-M-o is dabbrev-expand

"\e\C-o": dabbrev-expand

$endif

Python

$if Python

Wrap prompt in !help(...) (for PDB)

"\C-xh": "\C-a!help(\C-e)"

Wrap prompt in dir(...)

"\C-xd": "\C-adir(\C-e)"

$endif

Global

Prints the last recorded macro

"\C-xP": print-last-kbd-macro

M-m is back-to-indentation which is what I usually use to

go to the

beginning of a line; everywhere else, I bind it like C-a.

"\em": beginning-of-line

M-p and M-n should behave like they do in M-x shell in

Emacs.

"\ep": previous-history

"\en": next-history

C-M-f and C-M-v dump functions and variables.

"\e\C-f": dump-functions

"\e\C-v": dump-variables

Conclusion
GNU readline’s a real gem, and underused. I hope more people –
particularly Emacs users, as the keys are so familiar – learn a little bit more
about readline and its capabilities. Memorizing a handful of key bindings
will supercharge your command line productivity.

Further Reading
Have you read my
Reading Guide (/reading-guide) yet?
It's a curated guide
to most of my articles and I guarantee you'll learn something whether
you're a beginner or an expert. And why not check out my book? (/book)

Subscribe to the Mastering Emacs newsletter
I it i f tl i d i il h I it

https://www.masteringemacs.org/reading-guide
https://www.masteringemacs.org/book

I write infrequently, so go on — sign up and receive an e-mail when I write new
articles

Your E-mail address

Your First name

Subscribe

Very useful, thanks! I liked the keyboard macros and dabbrev-
expand in particular.

— Mathias ·
reply

Thanks for the post, very useful stuff. Another useful readline
variable is completion-ignore-case. Enabling this option makes
working with mixed case filenames way easier.

— Michael ·
reply

Is there a reason for the macro to wrap with ezf to be "\C-e | ezf
-f 1)\C-a(\C-a$\C-b\C-a", rather than "\C-e | ezf -f 1)\C-a
$(\C-a"? Going to the start of the line, adding the"$(" and then
returning to the start of the line seems more straight forward
than inserting a "(", then inserting a "$" before it, and the \C-b
seems redundant.
I think an extra space is also helpful before the "$(".

Would you like to try a sample of Mastering Emacs for free?

p p
An alternative to setting keys to call dump-functions and dump-
variables, bash provides the "bind" command which takes
options "-p" and "-v". It is simple to search this, e.g. with grep,
I think it is worth mentioning that M-. takes note of numeric
prefixes so you can get the first argument of the previous
command by M-1 M-.

— Icarus ·
reply

Very useful post as always. I found macros, dynamic abbrev,
yank/cycle kill ring and env. variable expansion to be useful.
I've been using Bash for more than 8 years and didn't know
about them :)

— Sundaram (https://legends2k.github.io/) · reply

Name

Email

Website

C-x C-f is what command?

Comment Content

https://legends2k.github.io/

Comment Content

Comment
 Cancel

Copyright 2010-22 Mickey Petersen. Terms & Privacy Policy (/terms). Updated 2022-05-24.

https://www.masteringemacs.org/terms

