
Most of the problems that you encounter when building user interface components

are relatively simple. Some state management, some DOM manipulation, some side

effect handling. Well-established libraries or frameworks come with tools or

Using Generators in React Components

Tomasz Gil

· 9 min readAug 18, 2021

MENU Follow

https://hashnode.com/@tomaszgil
https://hashnode.com/@tomaszgil
https://blog.tomaszgil.me/using-generators-in-react-components
https://blog.tomaszgil.me/
https://twitter.com/gil_tomasz
https://github.com/tomaszgil
https://tomaszgil.me/
https://hashnode.com/@tomaszgil
https://www.linkedin.com/in/tomasz-gil/
https://blog.tomaszgil.me/rss.xml


abstractions that let you handle these. But some problems seem to be more complex

than that and require a bit more work.

I recently came across one problem in UI which required a specific approach to state

updates React doesn't support out of the box. One way it could be solved was with

JavaScript generators.

If you need a refresher or an introduction to iterators and generators in JavaScript, I

recently published a blog post on this topic.

I suppose you know what the breadcrumb component is, or if not, you for sure came

across one. It typically displays the current page name, with some part of or the entire

hierarchy of pages it belongs to. In general, it's used to represent a path to any nested

object.

We're gonna build a simplified version of that today! And we will use a generator

function. Sounds cool?

As you can see in the example, we want our breadcrumbs to render a list of elements.

Additionally, if the entire path is longer than the available space, we want to display

only the last items that can fit plus an ellipsis indicating that the path is longer. Just

like so.

Our main character - breadcrumbs

https://blog.tomaszgil.me/what-the-heck-are-iterators-and-generators-in-javascript


First, let's decide on the API that the component will have. I went with two

components, one acting as a container and the other representing a breadcrumb item.

It's worth noting already that we will need these key  properties to properly rerender

these breadcrumbs dynamically in the future, whenever children  change.

Let's then go to the implementation, shall we? Since breadcrumbs is a navigation

component, the BreadcrumbItem  component can simply be a link tag.

The Breadcrumbs  component will be where the fun stuff happens. Let's define the

component then.

Implementing the component

<Breadcrumbs> 

  <BreadcrumbItem key="home">Home</BreadcrumbItem> 

  <BreadcrumbItem key="docs">Documentation</BreadcrumbItem> 

  <BreadcrumbItem key="crumbs">Breadcrumbs</BreadcrumbItem> 

  <BreadcrumbItem key="default">Default</BreadcrumbItem> 

</Breadcrumbs> 

COPY

export function BreadcrumbItem({ children, ...props }) { 

  return <a {...props}>{children}</a>; 

} 

COPY



We know that we will get our items as children . Depending on how much space

there is, we might not render all of them, so let's have a variable that will store the

number of visible items. Since changing this should trigger a rerender, let's use state,

starting with the initial children count passed. We will handle updating it based on

calculating the overflow later.

What's left is the return statement. We know how many elements should be visible -

visibleItemsCount . Also, when the number of items visible is lower than the number

of items passed, we will render an ellipsis.

export function Breadcrumbs({ children }) { 

  const childrenCount = React.Children.count(children); 

  const [visibleItemsCount, setVisibleItemsCount] = useState(childrenCou

} 

COPY

export function Breadcrumbs({ children }) { 

  const childrenCount = React.Children.count(children); 

  const [visibleItemsCount, setVisibleItemsCount] = useState(childrenCou

 

  const shouldRenderStack = childrenCount > visibleItemsCount; 

  const visibleChildren = shouldRenderStack 

    ? children.slice(-visibleItemsCount) 

    : children; 

 

  return ( 

    <nav> 

      <ol className="list"> 

        {shouldRenderStack && <li className="crumb">...</li>} 

 

        {React.Children.map(visibleChildren, (item) => ( 

          <li key={item.key} className="crumb"> 

            {item} 

COPY



Awesome! Now let's think about how we can approach the overflow.

When we get new children  we know that we should update the overflowing

elements in our component. We want to do this as soon as we render the component.

For taking measurements React gives us a hook - useLayoutEffect . It's similar to

useEffect , although it runs a bit earlier, right after React has performed all DOM

mutations.

          </li> 

        ))} 

      </ol> 

    </nav> 

  ); 

} 

Handling over�owing elements

export function Breadcrumbs({ children }) { 

  const childrenCount = React.Children.count(children); 

  const [visibleItemsCount, setVisibleItemsCount] = useState(childrenCou

 

  const updateOverflow = useCallback(() => {}, []); 

 

  useLayoutEffect(updateOverflow, [children, updateOverflow]); 

 

  const shouldRenderStack = childrenCount > visibleItemsCount; 

  const visibleChildren = shouldRenderStack 

    ? children.slice(-visibleItemsCount) 

    : children; 

 

  return ( 

    ... 

COPY



Now, the updateOverflow  function has to do two things:

The problem here is that we can only measure elements that are actually present in

the DOM. If some items are already folded, we can't measure them because they're

not rendered. We could make an invisible copy of the entire component, just for

measuring, but let's assume we don't want to use this technique.

This way, we can't perform the update in a single run without making assumptions on

how wide elements are (which we don't want to make either, since that would make

the component implementation depend on styles). So how about we do the following.

We would do this for each change that happens to our breadcrumbs' children. In our

case, rendering certain items means updating the number of visible items. And as you

see, this requires making two sequential state updates, one after another.

This approach to the breadcrumbs component is based on an open-source UI

library called React Spectrum coming from Adobe (here you can see the

breadcrumbs source code).

  ); 

} 

measure the elements so that we know how many items we can fit

update the visibleItemsCount  based on that information

Render all elements.1.

Measure how many will fit in the available space.2.

Render the elements that fit.3.

Making sequential state updates

https://react-spectrum.adobe.com/react-spectrum/
https://github.com/adobe/react-spectrum/blob/main/packages/%40react-spectrum/breadcrumbs/src/Breadcrumbs.tsx


Let's come back to our updateOverflow  implementation. Following what we've

established before, let's have a computeVisibleItems  that takes currently visible

items count and returns the number of items that fit in the available space. The

implementation is not key to understanding the whole concept, so I'll skip it (the full

implementation is available in this gist).

With this, we can perform the updates. Like we said, let's first set the visible items to

all passed children, then calculate the items and set visible items again.

export function Breadcrumbs({ children }) { 

  const childrenCount = React.Children.count(children); 

  const [visibleItemsCount, setVisibleItemsCount] = useState(childrenCou

 

  const updateOverflow = useCallback(() => { 

    function computeVisibleItems(currentVisibleItemsCount) { 

      let newItemsCount = 0; 

      // calculations... 

      return newItemsCount; 

    } 

  }, []); 

 

  useLayoutEffect(updateOverflow, [children, updateOverflow]); 

 

  ... 

} 

COPY

export function Breadcrumbs({ children }) { 

  const childrenCount = React.Children.count(children); 

  const [visibleItemsCount, setVisibleItemsCount] = useState(childrenCou

 

COPY

https://gist.github.com/tomaszgil/3a471eb7de8589c269c55440a1762b20


There's one problem with this. It might work in some cases, but there's no guarantee

it will work every time. The reason is that we don't wait for the first update to be

applied and cause a rerender before we run computeVisibleItems  and take

measurements.

To be sure that the previous update is reflected in the DOM, we would need to

perform the consecutive updates as consecutive layout effects.

Ok, so let's change the approach a bit. Let's declare our updating algorithm as a

generator function. Let's also change the useState  to useValueEffect  which we

will implement in a minute.

  const updateOverflow = useCallback(() => { 

    function computeVisibleItems(currentVisibleItemsCount) { 

      let newItemsCount = 0; 

      // calculations... 

      return newItemsCount; 

    } 

 

    setVisibleItemsCount(childrenCount); 

    const newVisibleItems = computeVisibleItems(childrenCount); 

    setVisibleItemsCount(newVisibleItems); 

  }, [setVisibleItemsCount, childrenCount]); 

 

  useLayoutEffect(updateOverflow, [children, updateOverflow]); 

 

  ... 

} 

export function Breadcrumbs({ children }) { 

  const childrenCount = React.Children.count(children); 

  const [visibleItemsCount, setVisibleItemsCount] = useValueEffect( 

    childrenCount 

  ); 

COPY



The idea behind useValueEffect  is that it will work similar to useState  - it will

expose the state and a way to change it. But instead of direct state changes, we will

allow the user to declare a sequence of state changes - in a form of a generator.

Why a generator you might ask? It allows the client to declare the sequence of state

values (using yield  keyword). On the other end, we have full control over how we

progress through these values. And this control is exactly what we need - the hook

internally will make sure that each state change happens only after a layout effect.

Let's declare the hook then. We still need a regular state inside to store the value.

Additionally, we'll return a function that will accept a generator function, execute it

 

  const updateOverflow = useCallback(() => { 

    function computeVisibleItems(currentVisibleItemsCount) { 

      let newItemsCount = 0; 

      // calculations... 

      return newItemsCount; 

    } 

 

    setVisibleItemsCount(function* () { 

      yield childrenCount; 

      const newVisibleItems = computeVisibleItems(childrenCount); 

      yield newVisibleItems; 

    }); 

  }, [setVisibleItemsCount, childrenCount]); 

 

  useLayoutEffect(updateOverflow, [children, updateOverflow]); 

 

  ... 

} 

Extracting to a custom hook



and store the generator object as our effect (in a ref  since changing it should not

trigger a rerender).

Awesome, let's now implement a mechanism that will move the generator. We will

implement this as a function stored in another ref  so we can easily call it and make

sure it has access to the correct value.

The mechanism itself is fairly straightforward. First, get the next value. Reset the

effect if we're done. If we got a value and it's different than the current one, update

the state (or if the value is the same, just move on).

function useValueEffect(defaultValue) { 

  const [value, setValue] = useState(defaultValue); 

  const effect = useRef(null); 

 

  const queue = useCallback( 

    (fn) => { 

      effect.current = fn(); 

    }, 

    [effect] 

  ); 

 

  return [value, queue]; 

} 

COPY

function useValueEffect(defaultValue) { 

  const [value, setValue] = useState(defaultValue); 

  const effect = useRef(null); 

 

  const nextRef = useRef(null); 

 

  nextRef.current = () => { 

COPY



Cool, we need two more things. One is staring our sequence of updates and the

second one is moving our generator to consecutive yields as a layout effect which

this hook is all about. Let's do this!

    const newValue = effect.current.next(); 

 

    if (newValue.done) { 

      effect.current = null; 

      return; 

    } 

 

    if (value === newValue.value) { 

      nextRef.current(); 

    } else { 

      setValue(newValue.value); 

    } 

  }; 

 

  const queue = useCallback( 

    (fn) => { 

      effect.current = fn(); 

    }, 

    [effect] 

  ); 

 

  return [value, queue]; 

} 

function useValueEffect(defaultValue) { 

  const [value, setValue] = useState(defaultValue); 

  const effect = useRef(null); 

 

  const nextRef = useRef(null); 

 

COPY



There's one edge case we have yet to cover. Let's look at the following example.

But now, since we aren't rendering all children, we also render the ellipsis, which we

didn't include in the calculation because it wasn't rendered!

  nextRef.current = () => { 

    ... 

  }; 

 

  useLayoutEffect(() => { 

    if (effect.current) { 

      nextRef.current(); 

    } 

  }); 

 

  const queue = useCallback( 

    (fn) => { 

      effect.current = fn(); 

      nextRef.current(); 

    }, 

    [effect, nextRef] 

  ); 

 

  return [value, queue]; 

} 

Performing one more calculation

We have 300 px of available space, and 4 items, each of them 100 px wide.1.

On the first run, we render all 4 elements, calculate how many of these we can fit

and we get that we can fit only 3 (since 3 * 100px = 300px ).

2.

We update the visible items count to 3.3.



We need to add one more step to our algorithm. Since we have an easy way of

declaring that using a generator, extending it becomes trivial.

And we're done! Full code from this example is available in this gist and this sandbox,

including the function for calculating the number of items visible.

export function Breadcrumbs({ children }) { 

  ... 

 

  const updateOverflow = useCallback(() => { 

    function computeVisibleItems(currentVisibleItemsCount) { 

      let newItemsCount = 0; 

      // calculations... 

      return newItemsCount; 

    } 

 

    setVisibleItemsCount(function* () { 

      yield childrenCount; 

      const newVisibleItems = computeVisibleItems(childrenCount); 

      yield newVisibleItems; 

 

      if (newVisibleItems < childrenCount) { 

        yield computeVisibleItems(newVisibleItems); 

      } 

    }); 

  }, [setVisibleItemsCount, childrenCount]); 

 

  useLayoutEffect(updateOverflow, [children, updateOverflow]); 

 

  ... 

} 

COPY

Conclusion

https://gist.github.com/tomaszgil/3a471eb7de8589c269c55440a1762b20
https://codesandbox.io/s/rough-thunder-8s8ut?file=/src/Breadcrumbs.jsx


2 1 1 1 1 1 1 1 1 1

Our component could be further improved, making the folded items available to select

or updating the overflow also when resize happens. Regardless, the core mechanism

stays the same.

This mechanism could be also implemented in different ways, e.g. using a ref  for

storing the step of our overflow algorithm we've reached. Having it defined as one

function though is arguably cleaner, far easier to reuse and extend.

Hope this article gives you an idea of how you can approach sequential state updates

in React component using generators!

JavaScript React UI state ReactHooks

WRITTEN BY

Tomasz Gil

I’m a software engineer focused on problem solving, lifelong learner based in Poznań,

Poland. Currently working at Rvvup as Senior Frontend Engineer.

Further reading and references

Full code available in this gist and this sandbox

Photo by Austin Ban on Unsplash

Follow

https://twitter.com/share?url=https%3A%2F%2Fblog.tomaszgil.me%2Fusing-generators-in-react-components&text=Using%20Generators%20in%20React%20Components%0D%0A%7B%20by%20%40gil_tomasz%20%7D%20from%20%40hashnode%0D%0A%0A%23javascript%20%23reactjs%20%23ui%20%23state%20%23reacthooks
https://blog.tomaszgil.me/tag/javascript
https://blog.tomaszgil.me/tag/reactjs
https://blog.tomaszgil.me/tag/ui
https://blog.tomaszgil.me/tag/state
https://blog.tomaszgil.me/tag/reacthooks
https://hashnode.com/@tomaszgil
https://hashnode.com/@tomaszgil
https://gist.github.com/tomaszgil/3a471eb7de8589c269c55440a1762b20
https://codesandbox.io/s/rough-thunder-8s8ut?file=/src/Breadcrumbs.jsx
https://unsplash.com/@austinban
https://unsplash.com/photos/IS6RwpuEJpY


MORE ARTICLES

Tomasz Gil

https://hashnode.com/@tomaszgil
https://blog.tomaszgil.me/7-lessons-from-the-software-craftsman
https://hashnode.com/@tomaszgil


7 Lessons From The Software Craftsman

After many decades of software engineering that produced all the advanced tools and

methodologies, m…

Tomasz Gil

Wordle in Remix: Part 10 - Error Handling

This is the tenth and last article in a series where we create a Wordle clone in Remix! 💿 We went

s…

Tomasz Gil

https://blog.tomaszgil.me/7-lessons-from-the-software-craftsman
https://blog.tomaszgil.me/7-lessons-from-the-software-craftsman
https://blog.tomaszgil.me/7-lessons-from-the-software-craftsman
https://hashnode.com/@tomaszgil
https://blog.tomaszgil.me/wordle-in-remix-part-10-error-handling
https://blog.tomaszgil.me/wordle-in-remix-part-10-error-handling
https://blog.tomaszgil.me/wordle-in-remix-part-10-error-handling
https://hashnode.com/@tomaszgil
https://blog.tomaszgil.me/wordle-in-remix-part-9-validation
https://hashnode.com/@tomaszgil
https://hashnode.com/@tomaszgil


Wordle in Remix: Part 9 - Validation

This is the ninth article in a series where we create a Wordle clone in Remix! 💿 We go step by

step…

gadi tzkhori

Wow such a creative solution! I had a similar issue but a bit different I think, Tag

components overflowing parent container. Bailed out with intersectionObserver.

Please revise my package and tell me what you think react-truncate-jsx

Reply

Tomasz Gil

gadi tzkhori yup, that looks like a similar problem! Didn't want to deal with

intersection observer directly though, so I used a hook for that.

Generally, found a lot of help from this library from Adobe, I really liked the idea.

1 1 1

Like

Oct 3, 2021

Oct 4, 2021

Comments (2)

Write a comment

https://blog.tomaszgil.me/wordle-in-remix-part-9-validation
https://blog.tomaszgil.me/wordle-in-remix-part-9-validation
https://blog.tomaszgil.me/wordle-in-remix-part-9-validation
https://hashnode.com/@gadi
https://github.com/gadi246/react-truncate-jsx
https://hashnode.com/@tomaszgil
https://twitter.com/gil_tomasz
https://github.com/tomaszgil
https://hashnode.com/@gadi
https://github.com/adobe/react-spectrum/blob/main/packages/%40react-spectrum/breadcrumbs/src/Breadcrumbs.tsx
https://hashnode.com/@gadi
https://hashnode.com/@tomaszgil


©2022 Blog | Tomasz Gil

Archive Privacy policy Terms

Publish wit h Hashnode

Powered by Hashnode - Home for tech writers and readers

· ·

https://blog.tomaszgil.me/archive
https://hashnode.com/privacy?source=blog-footer
https://hashnode.com/terms?source=blog-footer
https://hashnode.com/onboard?unlock-blog=true&source=blog-footer
https://hashnode.com/?source=blog-footer

