How Emacs fits inside of Unix philosophy
Further Reading

Footnotes

Unix as a tool forge

7 Nov 2022

programming, technology, emacs

Wikipedia® cites a few different sources on what "Unix Philosophy" is. Peter Salus summarizes it

as:

e Write programs that do one thing and do it well.
e Write programs to work together.

e Write programs to handle text streams, because that is a universal interface.

That second bullet point is my favorite: making composable programs rather than monolithic
systems. In this way, Unix is designed to be a forge for easily building new tools. The first rule
—writing programs that do one thing well—is largely a means to the second. When you have

building blocks that take simple shapes, you can compose them easily like Lego pieces.

I think that second goal is what makes Unix win: instead of providing you with every tool under
the sun, you get a set of composable tools that allow you to construct better tools perfectly
tailored to your problem. No one hacking on a PDP-11 thought to make an easy way to publish
a blog like this one, but they put the framework in place to let me put together the tools I need

to deploy this very post with a single command.

How Emacs fits inside of Unix philosophy

One might argue that Emacs goes against Unix philosophy, for it can quite literally do pretty

much everything.? But that only violates the first rule—if you consider Emacs to be a tool forge,
then Emacs is quite in line with the Unix philosophy. Emacs provides functions that all work on
the buffer or bits of text, and these can all be composed to craft a work environment to fit your

needs. I use over 100 different packages, and they all play nice together!


https://lambdaland.org/posts/2022-11-07_unix_philosophy/
https://lambdaland.org/tags/programming/
https://lambdaland.org/tags/technology/
https://lambdaland.org/tags/emacs/
https://git.sr.ht/~ashton314/.dotfiles

I have come to view Emacs as my primary forge. It's my layer on top of Unix, if you will. If I
have Emacs customized how I like it, it doesn't matter too much what operating system lives
underneath: I can get a lot of work done. I used to view Emacs just as a tool, and I used it
exclusively as a text editor. As time went on, though, I began to value the extreme keyboard-

centric control Emacs gave me over my system. That's why I moved from the terminal to the

GUI version of Emacs: I wanted to have more modifiers available to bind functions to.

Many people use Emacs exclusively as a text editor, and that's fine. Usually these people have
gotten comfortable with the command line, which is just another kind of tool forge. The great
thing is both places make building new tools easy. Whatever your toolkit (though I do
recommend you add Emacs to it if it's not already there!) make sure you can build new tools

with ease.

Further Reading

e Discussion on Hacker News

e A kind chap sent me a link to this blog post as well as their own thoughts, which seemed

like good things to link to.

Footnotes

https://en.wikipedia.org/wiki/Unix_philosophy

2

Emacs once ran Germany's flight control software. Please don't try this at home.

https://www.reddit.com/r/emacs/comments/lly7po/comment/gnvzisy



https://lambdaland.org/posts/2020-07-22-gui-emacs/
https://news.ycombinator.com/item?id=33522735
https://tilde.town/~ramin_hal9001/articles/emacs-fulfills-the-unix-philosophy.html
https://amodernist.com/texts/emacs-unix.html
https://en.wikipedia.org/wiki/Unix_philosophy
https://www.reddit.com/r/emacs/comments/lly7po/comment/gnvzisy

