
getify / CAF Public

Cancelable Async Flows (CAF)

 MIT license

 1.3k stars 53 forks

View code

Cancelable Async Flows (CAF)
buildbuild passingpassing coveragecoverage 100%100% modulesmodules ESM+UMD+CJSESM+UMD+CJS licenselicense MITMIT

CAF (/ˈkahf/) is a wrapper for function* generators that treats them like async function s, but
with support for external cancellation via tokens. In this way, you can express flows of synchronous-
looking asynchronous logic that are still cancelable (Cancelable Async Flows).

Also included is CAG(..) , for alternately wrapping function* generators to emulate ES2018
async-generators (async function *).

Environment Support

This library uses ES2018 features. If you need to support environments prior to ES2018, transpile it
first (with Babel, etc).

At A Glance

CAF (Cancelable Async Flows) wraps a function* generator so it looks and behaves like an

async function , but that can be externally canceled using a cancellation token:

 Star Notifications

Code Issues 4 Pull requests 1 Actions Projects Security Insights

 master

getify updating qunit version … on Aug 27 72

README.md

https://github.com/getify
https://github.com/getify/CAF
https://github.com/getify/CAF/blob/master/LICENSE.txt
https://github.com/getify/CAF/stargazers
https://github.com/getify/CAF/network/members
https://travis-ci.org/getify/CAF
https://www.npmjs.org/package/caf
https://coveralls.io/github/getify/caf?branch=master
https://nodejs.org/api/packages.html#dual-commonjses-module-packages
https://github.com/getify/CAF/blob/master/LICENSE.txt
https://github.com/login?return_to=%2Fgetify%2FCAF
https://github.com/login?return_to=%2Fgetify%2FCAF
https://github.com/getify/CAF
https://github.com/getify/CAF/issues
https://github.com/getify/CAF/pulls
https://github.com/getify/CAF/actions
https://github.com/getify/CAF/projects
https://github.com/getify/CAF/security
https://github.com/getify/CAF/pulse
https://github.com/getify/CAF/commits?author=getify
https://github.com/getify/CAF/commit/a2b12de6ba7357fc25bcaa36b43c47f017878fe4
https://github.com/getify/CAF/commit/a2b12de6ba7357fc25bcaa36b43c47f017878fe4
https://github.com/getify/CAF/commits/master
https://github.com/getify

Create a cancellation token (via new CAF.cancelToken()) to pass into your wrapped function*
generator, and then if you cancel the token, the function* generator will abort itself immediately,

even if it's presently waiting on a promise to resolve.

The generator receives the cancellation token's signal , so from inside it you can call another
function* generator via CAF and pass along that shared signal . In this way, a single cancellation

signal can cascade across and cancel all the CAF-wrapped functions in a chain of execution:

var token = new CAF.cancelToken();

// wrap a generator to make it look like a normal async

// function that when called, returns a promise.

var main = CAF(function *main(signal,url){

 var resp = yield ajax(url);

 // want to be able to cancel so we never get here?!?

 console.log(resp);
 return resp;

});

// run the wrapped async-looking function, listen to its

// returned promise

main(token.signal, "http://some.tld/other")

.then(onResponse, onCancelOrError);

// only wait 5 seconds for the ajax request!

setTimeout(function onElapsed(){
 token.abort("Request took too long!");

}, 5000);

var token = new CAF.cancelToken();

var one = CAF(function *one(signal,v){
 return yield two(signal, v);

});

var two = CAF(function *two(signal,v){
 return yield three(signal, v);

});

var three = CAF(function *three(signal,v){

 return yield ajax(`http://some.tld/?v=${v}`);

});

one(token.signal, 42);

// only wait 5 seconds for the request!
setTimeout(function onElapsed(){

 token.abort("Request took too long!");

}, 5000);

In this snippet, one(..) calls and waits on two(..) , two(..) calls and waits on three(..) , and

three(..) calls and waits on ajax(..) . Because the same cancellation token is used for the 3
generators, if token.abort() is executed while they're all still paused, they will all immediately

abort.

Note: The cancellation token has no effect on the actual ajax(..) call itself here, since that utility
ostensibly doesn't provide cancellation capability; the Ajax request itself would still run to its
completion (or error or whatever). We've only canceled the one(..) , two(..) , and three(..)
functions that were waiting to process its response. See AbortController(..) and Manual

Cancellation Signal Handling below for addressing this limitation.

CAG: Cancelable Async Flows Generators

ES2018 added "async generators", which is a pairing of async function and function* -- so you
can use await and yield in the same function, await for unwrapping a promise, and yield for

pushing a value out. An async-generator (async function * f(..) { .. }), like regular iterators,
is designed to be sequentially iterated, but using the "async iteration" protocol.

For example, in ES2018:

In the same way that CAF(..) emulates an async..await function with a function* generator,
the CAG(..) utility emulates an async-generator with a normal function* generator. You can
cancel an async-iteration early (even if it's currently waiting internally on a promise) with a
cancellation token.

You can also synchronously force-close an async-iterator by calling the return(..) on the iterator.

With native async-iterators, return(..) is not actually synchronous, but CAG(..) patches this to
allow synchronous closing.

async function *stuff(urls) {

 for (let url of urls) {
 let resp = await fetch(url); // await a promise

 yield resp.json(); // yield a value (even a promise for a value)

 }
}

// async-iteration loop

for await (let v of stuff(assetURLs)) {
 console.log(v);

}

Instead of yield ing a promise the way you do with CAF(..) , you use a provided pwait(..)
function with yield , like yield pwait(somePromise) . This allows a yield ..value.. expression

for pushing out a value through the iterator, as opposed to yield pwait(..value..) to locally wait
for the promise to resolve. To emulate a yield await ..value.. expression (common in async-

generators), you use two yield s together: yield yield pwait(..value..) .

For example:

In this snippet, the stuff(..) async-iteration can either be canceled if the 5-second timeout expires
before iteration is complete, or the click of the cancel button can force-close the iterator early. The
difference between them is that token cancellation would result in an exception bubbling out (to the
consuming loop), whereas calling return(..) will simply cleanly close the iterator (and halt the

loop) with no exception.

Background/Motivation

Generally speaking, an async function and a function* generator (driven with a generator-
runner) look very similar. For that reason, most people just prefer the async function form since it's

a little nicer syntax and doesn't require a library for the runner.

However, there are limitations to async function s that come from having the syntax and engine
make implicit assumptions that otherwise would have been handled by a function* generator
runner.

One unfortunate limitation is that an async function cannot be externally canceled once it starts

running. If you want to be able to cancel it, you have to intrusively modify its definition to have it
consult an external value source -- like a boolean or promise -- at each line that you care about being
a potential cancellation point. This is ugly and error-prone.

// NOTE: this is CAG(..), not to be confused with CAF(..)

var stuff = CAG(function *stuff({ signal, pwait },urls){
 for (let url of urls) {

 let resp = yield pwait(fetch(url,{ signal })); // await a promise

 yield resp.json(); // yield a value (even a promise for a value)
 }

});

var timeout = CAF.timeout(5000,"That's enough results!");
var it = stuff(timeout,assetURLs);

cancelBtn.addEventListener("click",() => it.return("Stop!"),false);

// async-iteration loop

for await (let v of it) {

 console.log(v);
}

https://github.com/getify/You-Dont-Know-JS/blob/1st-ed/async%20%26%20performance/ch4.md#promise-aware-generator-runner

function* generators by contrast can be aborted at any time, using the iterator's return(..)
method and/or by just not resuming the generator iterator instance with next() . But the downside of

using function* generators is either needing a runner utility or the repetitive boilerplate of handling
the iterator manually.

CAF provides a useful compromise: a function* generator that can be called like a normal async

function , but which supports a cancellation token.

The CAF(..) utility wraps a function* generator with a normal promise-returing function, just as if
it was an async function . Other than minor syntactic aesthetics, the major observable difference is

that a CAF-wrapped function must be provided a cancellation token's signal as its first argument,
with any other arguments passed subsequent, as desired.

By contrast, the CAG(..) utility wraps a function* generator as an ES2018 async-generator

(async function *) that respects the native async-iteration protocol. Instead of await , you use
yield pwait(..) in these emulated async-generators.

Overview

In the following snippet, the two functions are essentially equivalent; one(..) is an actual async

function , whereas two(..) is a wrapper around a generator, but will behave like an async function
in that it also returns a promise:

Both one(..) and two(..) can be called directly with argument(s), and both return a promise for
their completion:

async function one(v) {

 await delay(100);

 return v * 2;
}

var two = CAF(function *two(signal,v){
 yield delay(100);

 return v * 2;

});

one(21)

.then(console.log, console.error); // 42

var token = new CAF.cancelToken();

two(token.signal, 21)
.then(console.log, console.error); // 42

If token.abort(..) is executed while two(..) is still running, the signal 's promise will be
rejected. If you pass a cancellation reason (any value, but typically a string) to token.abort(..) ,

that will be the promise rejection reason:

Delays & Timeouts

One of the most common use-cases for cancellation of an async task is because too much time
passes and a timeout threshold is passed.

As shown earlier, you can implement that sort of logic with a cancelToken() instance and a manual
call to the environment's setTimeout(..) . However, there are some subtle but important downsides
to doing this kind of thing manually. These downsides are harder to spot in the browser, but are more
obvious in Node.js

Consider this code:

The main(..) function delays for 100 ms and then completes. But there's no logic that clears the
timeout set from delay(5000) , so it will continue to hold pending until that amount of time expires.

two(token, 21)
.then(console.log, console.error); // Took too long!

token.abort("Took too long!");

function delay(ms) {

 return new Promise(function c(res){

 setTimeout(res, ms);
 });

}

var token = new CAF.cancelToken();

var main = CAF(function *main(signal,ms){

 yield delay(ms);
 console.log("All done!");

});

main(token.signal, 100);

// only wait 5 seconds for the request!

delay(5000).then(function onElapsed(){
 token.abort("Request took too long!");

});

Of course, the token.abort(..) call at that point is moot, and is thus silently ignored. But the
problem is the timer still running, which keeps a Node.js process alive even if the rest of the program
has completed. The symptoms of this would be running a Node.js program from the command line
and observing it "hang" for a bit at the end instead of exiting right away. Try the above code to see
this in action.

There's two complications that make avoiding this downside tricky:

1. The delay(..) helper shown, which is a promisified version of setTimeout(..) , is basically

what you can produce by using Node.js's util.promisify(..) against setTimeout(..) .
However, that timer itself is not cancelable. You can't access the timer handle (return value from
setTimeout(..)) to call clearTimeout(..) on it. So, you can't stop the timer early even if you

wanted to.

2. If instead you set up your own timer externally, you need to keep track of the timer's handle so
you can call clearTimeout(..) if the async task completes successfully before the timeout
expires. This is manual and error-prone, as it's far too easy to forget.

Instead of inventing solutions to these problems, CAF provides two utilities for managing cancelable
delays and timeout cancellations: CAF.delay(..) and CAF.timeout(..) .

CAF.delay(..)

What we need is a promisified setTimeout(..) , like delay(..) we saw in the previous section, but

that can still be canceled. CAF.delay(..) provides us such functionality:

As you can see, CAF.delay(..) receives a cancellation token signal to cancel the timeout early
when needed. If you need to cancel the timeout early, abort the cancellation token:

var discardTimeout = new CAF.cancelToken();

// a promise that waits 5 seconds
CAF.delay(discardTimeout.signal, 5000)

.then(

 function onElapsed(msg){
 // msg: "delayed: 5000"

 },

 function onInterrupted(reason){
 // reason: "delay (5000) interrupted"

 }

);

discardTimeout.abort(); // cancel the `CAF.delay()` timeout

https://nodejs.org/dist/latest-v8.x/docs/api/util.html#util_util_promisify_original

The promise returned from CAF.delay(..) is fulfilled if the full time amount elapses, with a message
such as "delayed: 5000" . But if the timeout is aborted via the cancellation token, the promise is

rejected with a reason like "delay (5000) interrupted" .

Passing the cancellation token to CAF.delay(..) is optional; if omitted, CAF.delay(..) works just

like a regular promisified setTimeout(..) :

CAF.timeout(..)

While CAF.delay(..) provides a cancelable timeout promise, it's still overly manual to connect the

dots between a CAF-wrapped function and the timeout-abort process. CAF provides
CAF.timeout(..) to streamline this common use-case:

CAF.timeout(..) creates an instance of cancellationToken(..) that's set to abort() after the
specified amount of time, optionally using the cancellation reason you provide.

Note that you should pass the full timeoutToken token to the CAF-wrapped function (main(..)),

instead of just passing timeoutToken.signal . By doing so, CAF wires the token and the CAF-
wrapped function together, so that each one stops the other, whichever one happens first. No more
hanging timeouts!

Also note that main(..) still receives just the signal as its first argument, which is suitable to pass
along to other cancelable async functions, such as CAF.delay(..) as shown.

timeoutToken is a regular cancellation token as created by CAF.cancelToken() . As such, you can
call abort(..) on it directly, if necessary. You can also access timeoutToken.signal to access its

signal, and timeoutToken.signal.pr to access the promise that's rejected when the signal is
aborted.

finally { .. }

// promise that waits 200 ms

CAF.delay(200)
.then(function onElapsed(){

 console.log("Some time went by!");

});

var timeoutToken = CAF.timeout(5000, "Took too long!");

var main = CAF(function *main(signal,ms){
 yield CAF.delay(signal, ms);

 console.log("All done!");

});

main(timeoutToken, 100); // NOTE: pass the whole token, not just the .signal !!

finally clauses are often attached to a try { .. } block wrapped around the entire body of a
function, even if there's no catch clause defined. The most common use of this pattern is to define

some clean-up operations to be performed after the function is finished, whether that was from
normal completion or an early termination (such as uncaught exceptions, or cancellation).

Canceling a CAF-wrapped function* generator that is paused causes it to abort right away, but if
there's a pending finally {..} clause, it will always still have a chance to run.

Moreover, a return of any non- undefined value in a pending finally {..} clause will override

the promise rejection reason:

Whatever value is passed to abort(..) , if any, is normally set as the overall promise rejection
reason. But in this case, return 42 overrides the "Stopped!" rejection reason.

signal.aborted and signal.reason

var token = new CAF.cancelToken();

var main = CAF(function *main(signal,url){

 try {
 return yield ajax(url);

 }

 finally {
 // perform some clean-up operations

 }

});

main(token.signal, "http://some.tld/other")

.catch(console.log); // 42 <-- not "Stopped!"

token.abort("Stopped!");

var token = new CAF.cancelToken();

var main = CAF(function *main(signal,url){

 try {
 return yield ajax(url);

 }

 finally {
 return 42;

 }

});

main(token.signal, "http://some.tld/other")

.catch(console.log); // 42 <-- not "Stopped!"

token.abort("Stopped!");

Standard AbortSignal instances have an aborted boolean property that's set to true once the
signal is aborted. Recently, AbortSignal was extended to include a reason property. Prior to that

change,CAFwas manually patching signal with a reason property, but nowCAFrespects the
reason that's built-in to AbortSignal instances, if the environment supports it.

To set the reason for an abort-signal firing, pass a value to the AbortController 's abort(..)
call.

By checking the signal.aborted flag in a finally clause, you can determine whether the function
was canceled, and then additionally access the signal.reason to determine more specific context

information about why the cancellation occurred. This allows you to perform different clean-up
operations depending on cancellation or normal completion:

Memory Cleanup With discard()

A cancellation token fromCAFincludes a discard() method that can be called at any time to fully
unset any internal state in the token to allow proper GC (garbage collection) of any attached
resources.

When you are sure you're fully done with a cancellation token, it's a good idea to call discard() on
it, and then unset the variable holding that reference:

var token = new CAF.cancelToken();

var main = CAF(function *main(signal,url){

 try {

 return yield ajax(url);
 }

 finally {

 if (signal.aborted) {
 console.log(`Cancellation reason: ${ signal.reason }`);

 // perform cancellation-specific clean-up operations

 }
 else {

 // perform non-cancellation clean-up operations

 }

 }
});

main(token.signal, "http://some.tld/other");
// Cancellation reason: Stopped!

token.abort("Stopped!");

var token = new CAF.cancelToken();

// later

https://developer.mozilla.org/en-US/docs/Web/API/AbortSignal
https://developer.mozilla.org/en-US/docs/Web/API/AbortController

Once a token has been discard() ed, no further calls to abort(..) will be effective -- they will

silently be ignored.

AbortController(..)

CAF.cancelToken(..) instantiates AbortController , the DOM standard for canceling/aborting
operations like fetch(..) calls. As such, a CAF cancellation token's signal can be passed

directly to a DOM method like fetch(..) to control its cancellation:

CAF.cancelToken(..) can optionally receive an already instantiated AbortController , though

there's rarely a reason to do so:

Also, if you pass a raw AbortController instance into a CAF-wrapped function, it's automatically
wrapped into a CAF.cancelToken(..) instance:

token.discard();

token = null;

var token = new CAF.cancelToken();

var main = CAF(function *main(signal,url) {

 var resp = yield fetch(url, { signal });

 console.log(resp);

 return resp;

});

main(token.signal, "http://some.tld/other")

.catch(console.log); // "Stopped!"

token.abort("Stopped!");

var ac = new AbortController();
var token = new CAF.cancelToken(ac);

var main = CAF(function *main(signal,url) {
 var resp = yield fetch(url, { signal });

 console.log(resp);

 return resp;
});

var ac = new AbortController();
main(ac, "http://some.tld/other")

.catch(() => console.log("Stopped!")); // "Stopped!"

ac.abort();

https://developer.mozilla.org/en-US/docs/Web/API/AbortController

AbortController() Polyfill

If AbortController is not defined in the environment, use this polyfill to define a compatible stand-

in. The polyfill is included in the dist/ directory.

If you load CAF in Node using its CJS format (with require(..)) and use the main package entry
point (require("caf")), the polyfill is automatically loaded (in the global namespace). If you don't

use this entry point, but instead load something more directly, like require("caf/core") or
require("caf/cag") , then you need to manually load the polyfill first:

When using the ESM format of CAF in Node, the polyfill is not loaded automatically. Node 15/16+
includes AbortController natively, but in prior versions of Node (12-14) while using the ESM

format, you need to manually require(..) the polyfill (before import ing CAF) like this:

Be aware that if any environment needs this polyfill, utilities in that environment like fetch(..) won't

know about AbortController so they won't recognize or respond to it. They won't break in its
presence, just won't use it.

Manual Cancellation Signal Handling

Even if you aren't calling a cancellation signal-aware utility (like fetch(..)), you can still manually
respond to the cancellation signal via its attached promise:

require("/path/to/caf/dist/abortcontroller-polyfill-only.js");

var CAF = require("caf/core");

var CAG = require("caf/cag");

import { createRequire } from "module";

const require = createRequire(import.meta.url);
require("/path/to/caf/dist/abortcontroller-polyfill-only.js");

import CAF from "caf/core";

// ..

var token = new CAF.cancelToken();

var main = CAF(function *main(signal,url){

 // listen to the signal's promise rejection directly

 signal.pr.catch(reason => {
 // reason == "Stopped!"

 });

 var resp = yield ajax(url);

https://github.com/mo/abortcontroller-polyfill

Note: The catch(..) handler inside of main(..) will still run, even though main(..) itself will be
aborted at its waiting yield statement. If there was a way to manually cancel the ajax(..) call,
that code should be placed in the catch(..) handler.

Even if you aren't running a CAF-wrapped function, you can still respond to the cancellation
signal 's promise manually to affect flow control:

Note: As discussed earlier, the ajax(..) call itself is not cancellation-aware, and is thus not being

canceled here. But we are ending our waiting on the ajax(..) call. When signal.pr wins the
Promise.race(..) race and creates an exception from its promise rejection, flow control jumps

straight to the catch (err) { .. } clause.

Signal Combinators

 console.log(resp);

 return resp;
});

main(token.signal, "http://some.tld/other")

.catch(console.log); // "Stopped!"

token.abort("Stopped!");

var token = new CAF.cancelToken();

// normal async function, not CAF-wrapped
async function main(signal,url) {

 try {

 var resp = await Promise.race([
 ajax(url),

 signal.pr // listening to the cancellation

]);

 // this won't run if `signal.pr` rejects

 console.log(resp);

 return resp;
 }

 catch (err) {

 // err == "Stopped!"
 }

}

main(token.signal, "http://some.tld/other")
.catch(console.log); // "Stopped!"

token.abort("Stopped!");

You may want to combine two or more signals, similar to how you combine promises with
Promise.race(..) and Promise.all(..) . CAF provides two corresponding helpers for this

purpose:

CAF.signalRace(..) expects an array of one or more signals, and returns a new signal

(anySignal) that will fire as soon as any of the constituent signals have fired.

CAF.signalAll(..) expects an array of one or more signals, and returns a new signal
(allSignals) that will fire only once all of the constituent signals have fired.

Warning: This pattern (combining signals) has a potential downside. CAF typically cleans up timer-
based cancel tokens to make sure resources aren't being wasted and programs aren't hanging with
open timer handles. But in this pattern, signalRace(..) / signalAll(..) only receive reference(s)
to the signal(s), not the cancel tokens themselves, so it cannot do the manual cleanup. In the above
example, you should manually clean up the 5000ms timer by calling timeout.abort() if the

operation finishes before that timeout has fired the cancellation.

Beware Of Token Reuse

Beware of creating a single cancellation token that is reused for separate chains of function calls.
Unexpected results are likely, and they can be extremely difficult to debug.

As illustrated earlier, it's totally OK and intended that a single cancellation token signal be shared
across all the functions in one chain of calls (A -> B -> C). But reusing the same token across
two or more chains of calls (A -> B -> C and D -> E -> F) is asking for trouble.

var timeout = CAF.timeout(5000,"Took too long!");

var canceled = new CAF.cancelToken();

var exit = new AbortController();

var anySignal = CAF.signalRace([

 timeout.signal,

 canceled.signal,
 exit.signal

]);

var allSignals = CAF.signalAll([

 timeout.signal,

 canceled.signal,

 exit.signal
]);

main(anySignal, "http://some.tld/other");

// or

main(allSignals, "http://some.tld/other");

Imagine a scenario where you make two separate fetch(..) calls, one after the other, and the
second one runs too long so you cancel it via a timeout:

When you call token.abort(..) to cancel the second fetch(..) call in two(..) , the
signal.pr.catch(..) handler in one(..) still gets called, even though one(..) is already

finished. That's why "one: Second response too slow." prints unexpectedly.

The underlying gotcha is that a cancellation token's signal has a single pr promise associated
with it, and there's no way to reset a promise or "unregister" then(..) / catch(..) handlers

attached to it once you don't need them anymore. So if you reuse the token, you're reusing the pr
promise, and all registered promise handlers will be fired, even old ones you likely don't intend.

The above snippet illustrates this problem with signal.pr.catch(..) , but any of the other ways of

listening to a promise -- such as yield / await , Promise.all(..) / Promise.race(..) , etc -- are
all susceptible to the unexpected behavior.

var one = CAF(function *one(signal){

 signal.pr.catch(reason => {

 console.log(`one: ${reason}`);

 });

 return yield fetch("http://some.tld/", {signal});

});

var two = CAF(function *two(signal,v){

 signal.pr.catch(reason => {
 console.log(`two: ${reason}`);

 });

 return yield fetch(`http://other.tld/?v=${v}`, {signal});
});

var token = CAF.cancelToken();

one(token.signal)

.then(function(v){
 // only wait 3 seconds for this request

 setTimeout(function(){

 token.abort("Second response too slow.");

 }, 3000);

 return two(token.signal, v);

})
.then(console.log, console.error);

// one: Second response too slow. <-- Oops!
// two: Second response too slow.

// Second response too slow.

The safe and proper approach is to always create a new cancellation token for each chain of CAF-
wrapped function calls. For good measure, always unset any references to a token once it's no
longer needed, and make sure to call discard() ; thus, you won't accidentally reuse the token, and
the JS engine can properly GC (garbage collect) it.

Cycling Tokens

A common use case in managing async operations is when a currently pending operation needs to
be canceled only because it's being replaced by a subsequent operation.

For example, imagine a button on a page that requests some remote data to display. If the user clicks
the button again while a previous request is still pending, you can likely discard/cancel the previous
request and start up a new fresh request in its place.

In these sorts of cases, you may find yourself "cycling" through cancellation tokens, where you store
a reference to the current token, then when a new one is needed, the former token is aborted (to
cancel all its chained operations) and replaced with the new token instance. This sort of logic is not
too complex, but it does require keeping the token around across async operations, which
unfortunately pollutes an outer scope.

This use case is common enough to warrant a standard helper shipped with this library to reduce the
friction/impact of managing these cycles of tokens. CAF ships with tokenCycle() for this purpose:

The tokenCycle() function creates a separate instance of the token cycle manager, so you can
create as many independent cycles as your app needs. It returns a function (named getReqToken()

in the above snippet) which, when called, will produce a new token and cancel the previous token (if
one is pending). This function also optionally takes a single argument to use as the reason passed
in to abort the previous token.

You can of course keep these tokens around and use them for other cancellation controls. But in that
situation you likely don't need tokenCycle() . This helper is designed for the lightweight use case
where you wouldn't otherwise need to keep the token other than to make sure the previous operation
is canceled before being replaced with the new operation.

// create a token cycle
var getReqToken = CAF.tokenCycle();

btn.addEventListener("click",function onClick(){

 // get a new cancellation token, and
 // cancel the previous token (if any)

 //

 // note: this function optionally takes a
 // reason for aborting the previous token

 var cancelToken = getReqToken();

 requestUpdatedData(cancelToken,"my-data");
});

CAG: Emulating Async Generators

Where CAF(..) emulates a promise-returning async function using a generator, CAG(..) is

provided to emulate an async-iterator returning async-generator (async function*).

Async iteration is similar to streams (or primitive observables), where the values are consumed
asynchronously (typically using an ES2018 for await (..) loop):

For all the same reasons that async function s being non-cancelable is troublesome, async-
generators are similarly susceptible. An async-generator can be "stuck" await ing internally on a
promise, and the outer consuming code cannot do anything to force it to stop.

That's why CAG(..) is useful:

Like CAF(..) , functions wrapped by CAG(..) expect to receive a special value in their first

parameter position. Here, the object is destructured to reveal it contains both the cancellation-token
signal (as with CAF(..)) and the pwait(..) function, which enables emulating local await
..promise.. expressions as yield pwait(..promise..) .

for await (let v of someAsyncGenerator()) {

 // ..

}

// or:

var it = someAsyncGenerator();

for await (let v of it) {
 // ..

}

// instead of:

async function *stuff(urls) {
 for (let url of urls) {

 let resp = await fetch(url); // await a promise

 yield resp.json(); // yield a value (even a promise for a value)
 }

}

// do this:

var stuff = CAG(function *stuff({ signal, pwait },urls){

 for (let url of urls) {

 let resp = yield pwait(fetch(url,{ signal })); // await a promise
 yield resp.json(); // yield a value (even a promise for a value)

 }

});

The return from a CAG(..) wrapped function is an async-iterator (exactly as if a real native async-
generator had been invoked). As with CAF(..) values, the first argument passed should always be

the mandatory cancellation token (or its signal):

The returned async-iterator (it above) can be iterated manually with it.next(..) calls -- each
returns a promise for an iterator-result -- or more preferably with an ES2018 for await (..) loop:

In addition to being able to abort(..) the cancellation token passed into a CAG(..) -wrapped

generator, async-iterators also can be closed forcibly by calling their return(..) method.

Typically, the return(..) call on an async-iterator (from an async-generator) will have "wait" for the

attached async-generator to be "ready" to be closed -- in case an await promise expression is
currently pending. This means you cannot actually synchronously force-close them. But since
CAG(..) emulates async-generators with regular sync-generators, this nuance is "fixed". For

consistency, return(..) still returns a Promise, but it's an already-resolved promise with the
associated iterator-result.

CAG(..) -wrapped functions also follow these behaviors of CAF(..) -wrapped functions:

Aborting the cancellation token results in an exception (which can be trapped by try..catch)

propagating out from the most recent for await (..) (or it.next(..)) consumption point.

var stuff = CAG(function *stuff(..){ .. });

var timeout = CAF.timeout(5000,"Took too long.");

var it = stuff(timeout);

var timeout = CAF.timeout(5000,"Took too long.");

var it = stuff(timeout);

var { value, done } = await it.next();

// ..do that repeatedly..

// or preferably:
for await (let value of it) {

 // ..

}

var timeout = CAF.timeout(5000,"Took too long.");

var it = stuff(timeout);

// later (e.g. in a timer or event handler):

it.return("all done");

// Promise<{ value: "all done", done: true }>

The reason provided when aborting a cancellation token is (by default) set as the exception
that propagates out. This can be overriden by a return .. statement in a finally clause of

the wrapped generator function.

Event Streams

One of the most common use cases for async iterators (aka, streams) is to subscribe to an event
source (DOM element events, Node.js event emitters, etc) and iterate the received events.

CAG provides two helpers for event stream subscription: onEvent(..) and onceEvent(..) . As the
name implies, onEvent(..) listens for all events, whereas onceEvent(..) will listen only for a

single event to fire (and then close the stream and unsubscribe from the event emitter).

onEvent(..) returns an ES2018 async iterator, but onceEvent(..) returns a promise that resolves
(with the event value, if any) when the event fires.

onEvent(..) event subscriptions are lazy, meaning that they don't actually attach to the emitter
element until the first attempt to consume an event (via for await..of or a manual next(..) call
on the async iterator). So, in the above snippet, the clicks event stream is not yet subscribed to

any click events that happen until the for await..of loop starts (e.g., while waiting for the prior
DOMReady event to fire).

However, there may be cases where you want to force the event subscription to start early even
before consuming its events. Use start() to do so:

var cancel = new CAF.cancelToken();

var DOMReady = CAG.onceEvent(cancel,document,"DOMContentLoaded",/*evtOpts=*/false);

var clicks = CAG.onEvent(cancel,myBtn,"click",/*evtOpts=*/false);

// wait for this one-time event to fire

await DOMReady;

for await (let click of clicks) {
 console.log("Button clicked!");

}

var cancel = new CAF.cancelToken();

var clicks = CAG.onEvent(cancel,myBtn,"click",/*evtOpts=*/false);

// force eager listening to events

clicks.start();

// .. consume the stream later ..

Event streams internally buffer received events that haven't yet been consumed. This buffer grows
unbounded, so responsible memory management implies always consuming events from a stream
that is subscribed and actively receving events.

Once an event stream is closed (e.g., token cancellation, breaking out of a for await..of loop,
manually calling return(..) on the async iterator), the underlying event is unsubscribed.

npm Package

 modulesmodules ESM+UMD+CJSESM+UMD+CJS

To install this package from npm :

IMPORTANT: The CAF library relies on AbortController being present in the JS environment. If
the environment does not already define AbortController natively, CAF needs a polyfill for

AbortController . In some cases, the polyfill is automatically loaded, and in other cases it must be
manually required/imported. See the linked section for more details.

As of version 12.0.0, the package is available as an ES Module (in addition to CJS/UMD), and can be
imported as so:

Note: Starting in version 15.0.0, the (somewhat confusing) ESM specifier "caf/caf" (which imports

only CAF as a default-import) has been deprecated and will eventually be removed. Use
"caf/core" to default-import only the CAF module, or use just "caf" for named imports ({ CAF,

CAG }).

Also Note: Starting in version 11.x, CAF was also available in ESM format, but required an ESM
import specifier segment /esm in CAF import paths. As of version 15.0.0, this has been removed,
in favor of unified import specifier paths via Node Conditional Exports. For ESM import statements,

always use the specifier style "caf" or "caf/cag" , instead of "caf/esm" and "caf/esm/cag" ,
respectively.

To use CAF in Node via CJS format (with require(..)):

npm install caf

// named imports

import { CAF, CAG } from "caf";

// or, default imports:

import CAF from "caf/core";

import CAG from "caf/cag";

var CAF = require("caf");
var CAG = require("caf/cag");

https://www.npmjs.org/package/caf
https://nodejs.org/api/packages.html#dual-commonjses-module-packages
https://developer.mozilla.org/en-US/docs/Web/API/AbortController
https://nodejs.org/api/packages.html#packages_conditional_exports

Builds

buildbuild passingpassing modulesmodules ESM+UMD+CJSESM+UMD+CJS

The distribution files come pre-built with the npm package distribution, so you shouldn't need to
rebuild it under normal circumstances.

However, if you download this repository via Git:

1. The included build utility (scripts/build-core.js) builds (and minifies) the dist/* files.

2. To install the build and test dependencies, run npm install from the project root directory.

3. To manually run the build utility with npm:

4. To run the build utility directly without npm:

Tests

A test suite is included in this repository, as well as the npm package distribution. The default test
behavior runs the test suite using the files in src/ .

1. The tests are run with QUnit.

2. You can run the tests in a browser by opening up tests/index.html .

3. To run the test utility:

Other npm test scripts:

npm run test:package will run the test suite as if the package had just been installed via
npm. This ensures package.json : main and exports entry points are properly

configured.

npm run build

node scripts/build-core.js

npm test

https://travis-ci.org/getify/CAF
https://www.npmjs.org/package/caf
https://nodejs.org/api/packages.html#dual-commonjses-module-packages

npm run test:umd will run the test suite against the dist/umd/* files instead of the
src/* files.

npm run test:esm will run the test suite against the dist/esm/* files instead of the
src/* files.

npm run test:all will run all four modes of the test suite.

Test Coverage

coveragecoverage 100%100%

If you have NYC (Istanbul) already installed on your system (requires v14.1+), you can use it to
check the test coverage:

Then open up coverage/lcov-report/index.html in a browser to view the report.

Note: The npm script coverage:report is only intended for use by project maintainers. It sends
coverage reports to Coveralls.

License

licenselicense MITMIT

All code and documentation are (c) 2022 Kyle Simpson and released under the MIT License. A copy
of the MIT License is also included.

Releases

 36 tags

Sponsor this project

patreon.com/getify

https://www.paypal.com/paypalme2/getify

https://www.blockchain.com/btc/address/32R5dVrqirdcbiyvUw85y7YbPFZTd7YpnH

Learn more about GitHub Sponsors

npm run coverage

https://coveralls.io/github/getify/caf?branch=master
https://github.com/istanbuljs/nyc
https://coveralls.io/
https://github.com/getify/CAF/blob/master/LICENSE.txt
http://getify.mit-license.org/
https://github.com/getify/CAF/blob/master/LICENSE.txt
https://github.com/getify/CAF/releases
https://github.com/getify/CAF/tags
https://patreon.com/getify
https://www.paypal.com/paypalme2/getify
https://www.blockchain.com/btc/address/32R5dVrqirdcbiyvUw85y7YbPFZTd7YpnH
https://github.com/sponsors

Packages

No packages published

Used by 94

+ 86

Contributors 4

getify Kyle Simpson

DanielRuf Daniel Ruf

vkrol Veniamin Krol

chrisregnier Chris Regnier

Languages

JavaScript 99.0% HTML 1.0%

https://github.com/users/getify/packages?repo_name=CAF
https://github.com/getify/CAF/network/dependents
https://github.com/getify/CAF/network/dependents
https://github.com/getify/CAF/graphs/contributors
https://github.com/getify
https://github.com/getify
https://github.com/DanielRuf
https://github.com/DanielRuf
https://github.com/vkrol
https://github.com/vkrol
https://github.com/chrisregnier
https://github.com/chrisregnier
https://github.com/getify/CAF/search?l=javascript
https://github.com/getify/CAF/search?l=html

